[1]
J. Banhart, Manufacture, characterisation and application of cellular metals and metal foams, Prog. Mater. Sci. 46 (2001) 559-632.
DOI: 10.1016/s0079-6425(00)00002-5
Google Scholar
[2]
M.F. Ashby, A. Evans, N.A. Fleck, L.J. Gibson, J.W. Hutchinson, H.N.G. Wadley, Metal foams: a design guide, Elsevier, Amsterdam, Netherlands, (2000).
DOI: 10.1016/b978-075067219-1/50001-5
Google Scholar
[3]
B.H. Smith, S. Szyniszewski, J.F. Hajjar, B.W. Schafer, S.R. Arwade, Steel foam for structures: a review of applications, manufacturing and material properties, J. Constr. Steel Res. 71 (2012) 1-10.
DOI: 10.1016/j.jcsr.2011.10.028
Google Scholar
[4]
N.A. Fleck, O.B. Olurin, C. Chen, M.F. Ashby, The effect of hole size upon the strength of metallic and polymeric foams, J. Mech. Phys. Solids 49 (2001) 2015-(2030).
DOI: 10.1016/s0022-5096(01)00033-3
Google Scholar
[5]
C. Park, S.R. Nutt, PM synthesis and properties of steel foams, Mater. Sci. Eng. A 288 (2000) 111-118.
Google Scholar
[6]
L.J. Gibson, M.F. Ashby, Cellular solids: structure and properties, 2nd ed., Cambridge University Press, Cambridge, UK, (1999).
Google Scholar
[7]
A. Bansiddhi, D.C. Dunand, Shape-memory NiTi foams produced by solid-state replication with NaF, Intermetallics 15 (2007) 1612-1622.
DOI: 10.1016/j.intermet.2007.06.013
Google Scholar
[8]
J. Jakubowicz, G. Adamek, M. Dewidar, Titanium foam made with saccharose as a space holder, J. Porous Mater. 20(2013) 1137-1141.
DOI: 10.1007/s10934-013-9696-0
Google Scholar
[9]
Z. Esen, Ş. Bor, Processing of titanium foams using magnesium spacer particles, Scripta Mater. 56 (2007) 341-344.
DOI: 10.1016/j.scriptamat.2006.11.010
Google Scholar
[10]
B. Lee, T. Lee, Y. Lee, D.J. Lee, J. Jeong, J. Yuh et al, Space-holder effect on designing pore structure and determining mechanical properties in porous titanium, Mater. Des. 57 (2014) 712-718.
DOI: 10.1016/j.matdes.2013.12.078
Google Scholar
[11]
Y. Torres, J.A. Rodríguez, S. Arias, M. Echeverry, S. Robledo, V. Amigo et al, Processing, characterization and biological testing of porous titanium obtained by space holder technique, J. Mater. Sci. 47 (2012) 6565-6576.
DOI: 10.1007/s10853-012-6586-9
Google Scholar
[12]
A. Laptev, M. Bram, H.P. Buchkremer, D. Stöver, Study of production route for titanium parts combining very high porosity and complex shape, Powder Metall. 47 (2004) 85-92.
DOI: 10.1179/003258904225015536
Google Scholar
[13]
N. Bekoz, E. Oktay, The role of pore wall microstructure and micropores on the mechanical properties of Cu–Ni–Mo based steel foams, Mater. Sci. Eng. A 612 (2014) 387-397.
DOI: 10.1016/j.msea.2014.06.064
Google Scholar
[14]
Z. Esen, Ş. Bor, Characterization of Ti-6Al-4V alloy foams synthesized by space holder technique, Mater. Sci. Eng. A 528 (2011) 3200-3209.
DOI: 10.1016/j.msea.2011.01.008
Google Scholar
[15]
J. Xiao, H. Cui, G. Qiu, Y. Yang, X. Lü, Investigation on relationship between porosity and spacer content of titanium foams, Mater. Des. 88 (2015) 132-137.
Google Scholar
[16]
B. Wang, E. Zhang, On the compressive behavior of sintered porous coppers with low-to-medium porosities—Part II: Preparation and microstructure, Int. J. Mech. Sci. 50 (2008) 550-558.
DOI: 10.1016/j.ijmecsci.2007.08.003
Google Scholar
[17]
D.P. Mondal, H. Jain, S. Das, A.K. Jha, Stainless steel foams made through powder metallurgy route using NH4HCO3 as space holder. Mater. Des. 88 (2015) 430-437.
DOI: 10.1016/j.matdes.2015.09.020
Google Scholar
[18]
W. Niu, C. Bai, G. Qiu, Q. Wang, Processing and properties of porous titanium using space holder technique, Mater. Sci. Eng. A 506 (2009) 148-151.
DOI: 10.1016/j.msea.2008.11.022
Google Scholar
[19]
A. Bansiddhi, D.C. Dunand, Shape-memory NiTi foams produced by replication of NaCl space-holders, Acta Biomater. 4 (2008) 1996-(2007).
DOI: 10.1016/j.actbio.2008.06.005
Google Scholar
[20]
N. Tuncer, G. Arslan, Designing compressive properties of titanium foams, J. Mater. Sci. 44 (2009) 1477-1484.
DOI: 10.1007/s10853-008-3167-z
Google Scholar
[21]
G. Qiu, J. Xiao, J. Zhu, Y. Liao, C. Bai, J. Zhang, Processing and mechanical properties of titanium foams enhanced by Er2O3 for biomedical applications, Mater. Tech. 29 (2014) 118-123.
Google Scholar
[22]
N. Michailidis, F. Stergioudi, A. Tsouknidas, E. Pavlidou, Compressive response of Al-foams produced via a powder sintering process based on a leachable space-holder material, Mater. Sci. Eng. A 528 (2011) 1662-1667.
DOI: 10.1016/j.msea.2010.10.088
Google Scholar
[23]
W. Niu, C. Bai, G. Qiu, Q. Wang, L. Wen, D. Chen et al, Preparation and characterization of porous titanium using space-holder technique, Rare Met. 28 (2009) 338-342.
DOI: 10.1007/s12598-009-0066-7
Google Scholar
[24]
J. Xiao, Y. Yang, G. Qiu, Y. Liao, H. Cui, X. Lü, Volume change of macropores of titanium foams during sintering, Trans. Nonferrous Met. Soc. China 25 (2015) 3834-3839.
DOI: 10.1016/s1003-6326(15)64029-8
Google Scholar
[25]
N. Tuncer, G. Arslan, E. Maire, L. Salvo, Investigation of spacer size effect on architecture and mechanical properties of porous titanium, Mater. Sci. Eng. A 530 (2011) 633-642.
DOI: 10.1016/j.msea.2011.10.036
Google Scholar
[26]
I. Gligor, O. Soritau, M. Todea, C. Berce, A. Vulpoi, T. Marcu et al, Porous c.p. titanium using dextrin as space holder for endosseous implants, Part. Sci. Technol. 31 (2013) 357-365.
DOI: 10.1080/02726351.2012.749556
Google Scholar
[27]
M. Sharma, G.K. Gupta, O.P. Modi, B.K. Prasad, PM processed titanium foam: influence of morphology and content of space holder on microstructure and mechanical properties, Powder Metall. 56 (2013) 55-60.
DOI: 10.1179/1743290112y.0000000036
Google Scholar
[28]
E.E. Aşık, Ş. Bor, Fatigue behavior of Ti-6Al-4V foams processed by magnesium space holder technique, Mater. Sci. Eng. A 621 (2015) 157-165.
DOI: 10.1016/j.msea.2014.10.068
Google Scholar