Investigation on Relationship between Spacer Content and Porosity of Steel Foams

Article Preview

Abstract:

Steel foams have been receiving a growing interest due to the unique structural properties. The space holder technique provides a high degree of freedom and allows to produce this kind of materials varying in a wide range of porosity. However, the accurate prediction of final porosities has been a difficult problem in this technique. Therefore, a nonlinear equation between spacer content (φ1) and porosity (P) of the sintered steel foams was established in this study when macropores, micropores and their volumetric change were taken into account at the same time, that was P = (aφ1+b)/(cφ1+d). Then, validation of the theoretical relationship was carried out using the experimental data by authors and other researchers. The results showed that the porosity could be well predicted by the nonlinear relationship with varied preparing parameters. One set of coefficients in the model equation, i.e., a, b, c, d, corresponds to a certain preparing condition, while these values changed in different preparing conditions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

32-40

Citation:

Online since:

October 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Banhart, Manufacture, characterisation and application of cellular metals and metal foams, Prog. Mater. Sci. 46 (2001) 559-632.

DOI: 10.1016/s0079-6425(00)00002-5

Google Scholar

[2] M.F. Ashby, A. Evans, N.A. Fleck, L.J. Gibson, J.W. Hutchinson, H.N.G. Wadley, Metal foams: a design guide, Elsevier, Amsterdam, Netherlands, (2000).

DOI: 10.1016/b978-075067219-1/50001-5

Google Scholar

[3] B.H. Smith, S. Szyniszewski, J.F. Hajjar, B.W. Schafer, S.R. Arwade, Steel foam for structures: a review of applications, manufacturing and material properties, J. Constr. Steel Res. 71 (2012) 1-10.

DOI: 10.1016/j.jcsr.2011.10.028

Google Scholar

[4] N.A. Fleck, O.B. Olurin, C. Chen, M.F. Ashby, The effect of hole size upon the strength of metallic and polymeric foams, J. Mech. Phys. Solids 49 (2001) 2015-(2030).

DOI: 10.1016/s0022-5096(01)00033-3

Google Scholar

[5] C. Park, S.R. Nutt, PM synthesis and properties of steel foams, Mater. Sci. Eng. A 288 (2000) 111-118.

Google Scholar

[6] L.J. Gibson, M.F. Ashby, Cellular solids: structure and properties, 2nd ed., Cambridge University Press, Cambridge, UK, (1999).

Google Scholar

[7] A. Bansiddhi, D.C. Dunand, Shape-memory NiTi foams produced by solid-state replication with NaF, Intermetallics 15 (2007) 1612-1622.

DOI: 10.1016/j.intermet.2007.06.013

Google Scholar

[8] J. Jakubowicz, G. Adamek, M. Dewidar, Titanium foam made with saccharose as a space holder, J. Porous Mater. 20(2013) 1137-1141.

DOI: 10.1007/s10934-013-9696-0

Google Scholar

[9] Z. Esen, Ş. Bor, Processing of titanium foams using magnesium spacer particles, Scripta Mater. 56 (2007) 341-344.

DOI: 10.1016/j.scriptamat.2006.11.010

Google Scholar

[10] B. Lee, T. Lee, Y. Lee, D.J. Lee, J. Jeong, J. Yuh et al, Space-holder effect on designing pore structure and determining mechanical properties in porous titanium, Mater. Des. 57 (2014) 712-718.

DOI: 10.1016/j.matdes.2013.12.078

Google Scholar

[11] Y. Torres, J.A. Rodríguez, S. Arias, M. Echeverry, S. Robledo, V. Amigo et al, Processing, characterization and biological testing of porous titanium obtained by space holder technique, J. Mater. Sci. 47 (2012) 6565-6576.

DOI: 10.1007/s10853-012-6586-9

Google Scholar

[12] A. Laptev, M. Bram, H.P. Buchkremer, D. Stöver, Study of production route for titanium parts combining very high porosity and complex shape, Powder Metall. 47 (2004) 85-92.

DOI: 10.1179/003258904225015536

Google Scholar

[13] N. Bekoz, E. Oktay, The role of pore wall microstructure and micropores on the mechanical properties of Cu–Ni–Mo based steel foams, Mater. Sci. Eng. A 612 (2014) 387-397.

DOI: 10.1016/j.msea.2014.06.064

Google Scholar

[14] Z. Esen, Ş. Bor, Characterization of Ti-6Al-4V alloy foams synthesized by space holder technique, Mater. Sci. Eng. A 528 (2011) 3200-3209.

DOI: 10.1016/j.msea.2011.01.008

Google Scholar

[15] J. Xiao, H. Cui, G. Qiu, Y. Yang, X. Lü, Investigation on relationship between porosity and spacer content of titanium foams, Mater. Des. 88 (2015) 132-137.

Google Scholar

[16] B. Wang, E. Zhang, On the compressive behavior of sintered porous coppers with low-to-medium porosities—Part II: Preparation and microstructure, Int. J. Mech. Sci. 50 (2008) 550-558.

DOI: 10.1016/j.ijmecsci.2007.08.003

Google Scholar

[17] D.P. Mondal, H. Jain, S. Das, A.K. Jha, Stainless steel foams made through powder metallurgy route using NH4HCO3 as space holder. Mater. Des. 88 (2015) 430-437.

DOI: 10.1016/j.matdes.2015.09.020

Google Scholar

[18] W. Niu, C. Bai, G. Qiu, Q. Wang, Processing and properties of porous titanium using space holder technique, Mater. Sci. Eng. A 506 (2009) 148-151.

DOI: 10.1016/j.msea.2008.11.022

Google Scholar

[19] A. Bansiddhi, D.C. Dunand, Shape-memory NiTi foams produced by replication of NaCl space-holders, Acta Biomater. 4 (2008) 1996-(2007).

DOI: 10.1016/j.actbio.2008.06.005

Google Scholar

[20] N. Tuncer, G. Arslan, Designing compressive properties of titanium foams, J. Mater. Sci. 44 (2009) 1477-1484.

DOI: 10.1007/s10853-008-3167-z

Google Scholar

[21] G. Qiu, J. Xiao, J. Zhu, Y. Liao, C. Bai, J. Zhang, Processing and mechanical properties of titanium foams enhanced by Er2O3 for biomedical applications, Mater. Tech. 29 (2014) 118-123.

Google Scholar

[22] N. Michailidis, F. Stergioudi, A. Tsouknidas, E. Pavlidou, Compressive response of Al-foams produced via a powder sintering process based on a leachable space-holder material, Mater. Sci. Eng. A 528 (2011) 1662-1667.

DOI: 10.1016/j.msea.2010.10.088

Google Scholar

[23] W. Niu, C. Bai, G. Qiu, Q. Wang, L. Wen, D. Chen et al, Preparation and characterization of porous titanium using space-holder technique, Rare Met. 28 (2009) 338-342.

DOI: 10.1007/s12598-009-0066-7

Google Scholar

[24] J. Xiao, Y. Yang, G. Qiu, Y. Liao, H. Cui, X. Lü, Volume change of macropores of titanium foams during sintering, Trans. Nonferrous Met. Soc. China 25 (2015) 3834-3839.

DOI: 10.1016/s1003-6326(15)64029-8

Google Scholar

[25] N. Tuncer, G. Arslan, E. Maire, L. Salvo, Investigation of spacer size effect on architecture and mechanical properties of porous titanium, Mater. Sci. Eng. A 530 (2011) 633-642.

DOI: 10.1016/j.msea.2011.10.036

Google Scholar

[26] I. Gligor, O. Soritau, M. Todea, C. Berce, A. Vulpoi, T. Marcu et al, Porous c.p. titanium using dextrin as space holder for endosseous implants, Part. Sci. Technol. 31 (2013) 357-365.

DOI: 10.1080/02726351.2012.749556

Google Scholar

[27] M. Sharma, G.K. Gupta, O.P. Modi, B.K. Prasad, PM processed titanium foam: influence of morphology and content of space holder on microstructure and mechanical properties, Powder Metall. 56 (2013) 55-60.

DOI: 10.1179/1743290112y.0000000036

Google Scholar

[28] E.E. Aşık, Ş. Bor, Fatigue behavior of Ti-6Al-4V foams processed by magnesium space holder technique, Mater. Sci. Eng. A 621 (2015) 157-165.

DOI: 10.1016/j.msea.2014.10.068

Google Scholar