The Ordered Porous Aluminum: Modeling, Preparation, and Properties with Designed Structures

Article Preview

Abstract:

Porous structure is the most important feature for porous metals, which influences the properties of porous metals. The size, shape and distribution of traditional porous metals are usually random and irregular. Therefore, it is difficult to establish the relationship between structures and properties in porous metals with random structure. The idea proposed that size, shape and distribution in porous metals are all ordered, which contributes to achieve the structure design and help the prediction of properties. Traditional methods are difficult to control the pore size, shape and distribution by gas, solid and hollow spheres. The direct rapid prototype technique can achieve the structure design and control, but there are some inevitable limitations. Therefore, the indirect method combining the infiltration casting and the selected laser sintering technique is carried out in this study. The 2D honeycomb structure and the 3D ordered porous structure can be both fabricated by this new method. The whole simulation process including modeling the ordered porous structure, fabricating the ordered porous specimen, and predicting the properties of the ordered porous metals can be achieved. Through this way the optimum structures and properties of ordered porous aluminum can be obtained.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

148-155

Citation:

Online since:

October 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Banhart, Manufacture, characterisation and application of cellular metals and metal foams, Prog. Mater. Sci. 46 (2001) 559-632.

DOI: 10.1016/s0079-6425(00)00002-5

Google Scholar

[2] L. Huang, H. Wang, D. Yang, F. Ye, Z.P. Lu, Effects of scandium additions on mechanical properties of cellular Al-based foams, Intermet. 28 (2012) 71-76.

DOI: 10.1016/j.intermet.2012.03.050

Google Scholar

[3] K. Stöbener, J. Baumeister, G. Rausch, M. Rausch, Forming metal foams by simpler methods for cheaper solutions, Met. Powder Rep. 60 (2005) 12-16.

DOI: 10.1016/s0026-0657(05)00316-4

Google Scholar

[4] A. Boschetto, F. Campana, D. Pilone, Comparison Through Image Analysis Between Al Foams Produced Using Two Different Methods, J. Mater. Eng. Perform. 23 (2014) 572-580.

DOI: 10.1007/s11665-013-0745-2

Google Scholar

[5] H. Bafti, A. Habibolahzadeh, Production of aluminum foam by spherical carbamide space holder technique-processing parameters, Mater. Des. 31 (2010) 4122-4129.

DOI: 10.1016/j.matdes.2010.04.038

Google Scholar

[6] S.F. Fischer, P. Schüler, C. Fleck, A. Bührig-Polaczek, Influence of the casting and mould temperatures on the (micro)structure and compression behaviour of investment-cast open-pore aluminium foams, Acta Mater. 61 (2013) 5152-5161.

DOI: 10.1016/j.actamat.2013.04.069

Google Scholar

[7] A. Boschetto, L. Bottini, F. Campana, L. Consorti, D. Pilone, Investigation via morphological analysis of aluminium foams produced by replication casting, Fract. Struct. Integr. 26 (2013) 1-11.

DOI: 10.3221/igf-esis.26.01

Google Scholar

[8] A. Herrera, A. Yánez, O. Martel, H. Afonso, D. Monopoli, Computational study and experimental validation of porous structures fabricated by electron beam melting: A challenge to avoid stress shielding, Mater. Sci. Eng. C. 45 (2014) 89-93.

DOI: 10.1016/j.msec.2014.08.050

Google Scholar

[9] C. Yan, L. Hao, A. Hussein, D. Raymont, Evaluations of cellular lattice structures manufactured using selective laser melting, Int. J. Mach. Tool. Manuf. 62 (2012) 32-38.

DOI: 10.1016/j.ijmachtools.2012.06.002

Google Scholar

[10] S. Eshraghi, S. Das, Mechanical and microstructural properties of polycaprolactone scaffolds with one-dimensional, two-dimensional, and three-dimensional orthogonally oriented porous architectures produced by selective laser sintering, Acta Biomater. 6 (2010).

DOI: 10.1016/j.actbio.2010.02.002

Google Scholar

[11] F.P.W. Melchels, K. Bertoldi, R. Gabbrielli, A.H. Velders, J. Feijen, D.W. Grijpma, Mathematically defined tissue engineering scaffold architectures prepared by stereolithography, Biomater. 31 (2010) 6909-6916.

DOI: 10.1016/j.biomaterials.2010.05.068

Google Scholar

[12] M. Jamshidinia, L. Wang, W. Tong, R. Kovacevic, The bio-compatible dental implant designed by using non-stochastic porosity produced by Electron Beam Melting® (EBM), J. Mater. Process. Technol. 214 (2014) 1728-1739.

DOI: 10.1016/j.jmatprotec.2014.02.025

Google Scholar

[13] S.J. Li, Q.S. Xu, Z. Wang, W.T. Hou, Y.L. Hao, R. Yang, L.E. Murr, Influence of cell shape on mechanical properties of Ti–6Al–4V meshes fabricated by electron beam melting method, Acta Biomater. 10 (2014) 4537-4547.

DOI: 10.1016/j.actbio.2014.06.010

Google Scholar

[14] J. Parthasarathy, B. Starly, S. Raman, A. Christensen, Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM), J. Mech. Behav. Biomed. Mater. 3 (2010) 249-259.

DOI: 10.1016/j.jmbbm.2009.10.006

Google Scholar

[15] C. Yan, L. Hao, A. Hussein, S.L. Bubb, P. Young, D. Raymont, Evaluation of light-weight AlSi10Mg periodic cellular lattice structures fabricated via direct metal laser sintering, J. Mater. Process. Technol. 214 (2014) 856-864.

DOI: 10.1016/j.jmatprotec.2013.12.004

Google Scholar

[16] E. Sallica-Leva, A.L. Jardini, J.B. Fogagnolo, Microstructure and mechanical behavior of porous Ti–6Al–4V parts obtained by selective laser melting, J. Mech. Behav. Biomed. Mater. 26 (2013) 98-108.

DOI: 10.1016/j.jmbbm.2013.05.011

Google Scholar

[17] M.P. Staiger, I. Kolbeinsson, N.T. Kirkland, T. Nguyen, G. Dias, T.B.F. Woodfield, Synthesis of topologically-ordered open-cell porous magnesium, Mater. Lett. 64 (2010) 2572-2574.

DOI: 10.1016/j.matlet.2010.08.049

Google Scholar

[18] T.L. Nguyen, M.P. Staiger, G.J. Dias, T.B.F. Woodfield, A Novel Manufacturing Route for Fabrication of Topologically-Ordered Porous Magnesium Scaffolds, Adv. Eng. Mater. 13 (2011) 872-881.

DOI: 10.1002/adem.201100029

Google Scholar

[19] N.T. Kirkland, I. Kolbeinsson, T. Woodfield, G.J. Dias, M.P. Staiger, Synthesis and properties of topologically ordered porous magnesium, Mater. Sci. Eng. B. 176 (2011) 1666-1672.

DOI: 10.1016/j.mseb.2011.04.006

Google Scholar

[20] P. Pinto, N. Peixinho, F. Silva, D. Soares, Compressive properties and energy absorption of aluminum foams with modified cellular geometry, J. Mater. Process. Technol. 214 (2014) 571-577.

DOI: 10.1016/j.jmatprotec.2013.11.011

Google Scholar

[21] J. Mun, B. Yun, J. Ju, B. Chang, Indirect additive manufacturing based casting of a periodic 3D cellular metal – Flow simulation of molten aluminum alloy, J. Manuf. Process. 17 (2015) 28-40.

DOI: 10.1016/j.jmapro.2014.11.001

Google Scholar

[22] E. Tamjid, A. Simchi, Fabrication of a highly ordered hierarchically designed porous nanocomposite via indirect 3D printing: Mechanical properties and in vitro cell responses, Mater. Des. 88 (2015) 924-931.

DOI: 10.1016/j.matdes.2015.08.133

Google Scholar

[23] J.H. Park, J.W. Jung, H. Kang, D. Cho, Indirect three-dimensional printing of synthetic polymer scaffold based on thermal molding process, Biofabrication. 6 (2014) 025003.

DOI: 10.1088/1758-5082/6/2/025003

Google Scholar

[24] I. Sabree, J.E. Gough, B. Derby, Mechanical properties of porous ceramic scaffolds: Influence of internal dimensions, Ceram. Int. 41 (2015) 8425-8432.

DOI: 10.1016/j.ceramint.2015.03.044

Google Scholar

[25] D. Snelling, Q. Li, N. Meisel, C.B. Williams, R.C. Batra, A.P. Druschitz, Lightweight Metal Cellular Structures Fabricated via 3D Printing of Sand Cast Molds, Adv. Eng. Mater. 17 (2015) 923-932.

DOI: 10.1002/adem.201400524

Google Scholar