[1]
J. Banhart, Manufacture, characterisation and application of cellular metals and metal foams, Prog. Mater. Sci. 46 (2001) 559-632.
DOI: 10.1016/s0079-6425(00)00002-5
Google Scholar
[2]
L. Huang, H. Wang, D. Yang, F. Ye, Z.P. Lu, Effects of scandium additions on mechanical properties of cellular Al-based foams, Intermet. 28 (2012) 71-76.
DOI: 10.1016/j.intermet.2012.03.050
Google Scholar
[3]
K. Stöbener, J. Baumeister, G. Rausch, M. Rausch, Forming metal foams by simpler methods for cheaper solutions, Met. Powder Rep. 60 (2005) 12-16.
DOI: 10.1016/s0026-0657(05)00316-4
Google Scholar
[4]
A. Boschetto, F. Campana, D. Pilone, Comparison Through Image Analysis Between Al Foams Produced Using Two Different Methods, J. Mater. Eng. Perform. 23 (2014) 572-580.
DOI: 10.1007/s11665-013-0745-2
Google Scholar
[5]
H. Bafti, A. Habibolahzadeh, Production of aluminum foam by spherical carbamide space holder technique-processing parameters, Mater. Des. 31 (2010) 4122-4129.
DOI: 10.1016/j.matdes.2010.04.038
Google Scholar
[6]
S.F. Fischer, P. Schüler, C. Fleck, A. Bührig-Polaczek, Influence of the casting and mould temperatures on the (micro)structure and compression behaviour of investment-cast open-pore aluminium foams, Acta Mater. 61 (2013) 5152-5161.
DOI: 10.1016/j.actamat.2013.04.069
Google Scholar
[7]
A. Boschetto, L. Bottini, F. Campana, L. Consorti, D. Pilone, Investigation via morphological analysis of aluminium foams produced by replication casting, Fract. Struct. Integr. 26 (2013) 1-11.
DOI: 10.3221/igf-esis.26.01
Google Scholar
[8]
A. Herrera, A. Yánez, O. Martel, H. Afonso, D. Monopoli, Computational study and experimental validation of porous structures fabricated by electron beam melting: A challenge to avoid stress shielding, Mater. Sci. Eng. C. 45 (2014) 89-93.
DOI: 10.1016/j.msec.2014.08.050
Google Scholar
[9]
C. Yan, L. Hao, A. Hussein, D. Raymont, Evaluations of cellular lattice structures manufactured using selective laser melting, Int. J. Mach. Tool. Manuf. 62 (2012) 32-38.
DOI: 10.1016/j.ijmachtools.2012.06.002
Google Scholar
[10]
S. Eshraghi, S. Das, Mechanical and microstructural properties of polycaprolactone scaffolds with one-dimensional, two-dimensional, and three-dimensional orthogonally oriented porous architectures produced by selective laser sintering, Acta Biomater. 6 (2010).
DOI: 10.1016/j.actbio.2010.02.002
Google Scholar
[11]
F.P.W. Melchels, K. Bertoldi, R. Gabbrielli, A.H. Velders, J. Feijen, D.W. Grijpma, Mathematically defined tissue engineering scaffold architectures prepared by stereolithography, Biomater. 31 (2010) 6909-6916.
DOI: 10.1016/j.biomaterials.2010.05.068
Google Scholar
[12]
M. Jamshidinia, L. Wang, W. Tong, R. Kovacevic, The bio-compatible dental implant designed by using non-stochastic porosity produced by Electron Beam Melting® (EBM), J. Mater. Process. Technol. 214 (2014) 1728-1739.
DOI: 10.1016/j.jmatprotec.2014.02.025
Google Scholar
[13]
S.J. Li, Q.S. Xu, Z. Wang, W.T. Hou, Y.L. Hao, R. Yang, L.E. Murr, Influence of cell shape on mechanical properties of Ti–6Al–4V meshes fabricated by electron beam melting method, Acta Biomater. 10 (2014) 4537-4547.
DOI: 10.1016/j.actbio.2014.06.010
Google Scholar
[14]
J. Parthasarathy, B. Starly, S. Raman, A. Christensen, Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM), J. Mech. Behav. Biomed. Mater. 3 (2010) 249-259.
DOI: 10.1016/j.jmbbm.2009.10.006
Google Scholar
[15]
C. Yan, L. Hao, A. Hussein, S.L. Bubb, P. Young, D. Raymont, Evaluation of light-weight AlSi10Mg periodic cellular lattice structures fabricated via direct metal laser sintering, J. Mater. Process. Technol. 214 (2014) 856-864.
DOI: 10.1016/j.jmatprotec.2013.12.004
Google Scholar
[16]
E. Sallica-Leva, A.L. Jardini, J.B. Fogagnolo, Microstructure and mechanical behavior of porous Ti–6Al–4V parts obtained by selective laser melting, J. Mech. Behav. Biomed. Mater. 26 (2013) 98-108.
DOI: 10.1016/j.jmbbm.2013.05.011
Google Scholar
[17]
M.P. Staiger, I. Kolbeinsson, N.T. Kirkland, T. Nguyen, G. Dias, T.B.F. Woodfield, Synthesis of topologically-ordered open-cell porous magnesium, Mater. Lett. 64 (2010) 2572-2574.
DOI: 10.1016/j.matlet.2010.08.049
Google Scholar
[18]
T.L. Nguyen, M.P. Staiger, G.J. Dias, T.B.F. Woodfield, A Novel Manufacturing Route for Fabrication of Topologically-Ordered Porous Magnesium Scaffolds, Adv. Eng. Mater. 13 (2011) 872-881.
DOI: 10.1002/adem.201100029
Google Scholar
[19]
N.T. Kirkland, I. Kolbeinsson, T. Woodfield, G.J. Dias, M.P. Staiger, Synthesis and properties of topologically ordered porous magnesium, Mater. Sci. Eng. B. 176 (2011) 1666-1672.
DOI: 10.1016/j.mseb.2011.04.006
Google Scholar
[20]
P. Pinto, N. Peixinho, F. Silva, D. Soares, Compressive properties and energy absorption of aluminum foams with modified cellular geometry, J. Mater. Process. Technol. 214 (2014) 571-577.
DOI: 10.1016/j.jmatprotec.2013.11.011
Google Scholar
[21]
J. Mun, B. Yun, J. Ju, B. Chang, Indirect additive manufacturing based casting of a periodic 3D cellular metal – Flow simulation of molten aluminum alloy, J. Manuf. Process. 17 (2015) 28-40.
DOI: 10.1016/j.jmapro.2014.11.001
Google Scholar
[22]
E. Tamjid, A. Simchi, Fabrication of a highly ordered hierarchically designed porous nanocomposite via indirect 3D printing: Mechanical properties and in vitro cell responses, Mater. Des. 88 (2015) 924-931.
DOI: 10.1016/j.matdes.2015.08.133
Google Scholar
[23]
J.H. Park, J.W. Jung, H. Kang, D. Cho, Indirect three-dimensional printing of synthetic polymer scaffold based on thermal molding process, Biofabrication. 6 (2014) 025003.
DOI: 10.1088/1758-5082/6/2/025003
Google Scholar
[24]
I. Sabree, J.E. Gough, B. Derby, Mechanical properties of porous ceramic scaffolds: Influence of internal dimensions, Ceram. Int. 41 (2015) 8425-8432.
DOI: 10.1016/j.ceramint.2015.03.044
Google Scholar
[25]
D. Snelling, Q. Li, N. Meisel, C.B. Williams, R.C. Batra, A.P. Druschitz, Lightweight Metal Cellular Structures Fabricated via 3D Printing of Sand Cast Molds, Adv. Eng. Mater. 17 (2015) 923-932.
DOI: 10.1002/adem.201400524
Google Scholar