[1]
Z. P. Xi, J. L. Zhu, H. P. Tang, Q. B. Ao, H. Zhi, J.Y. Wang, et al, Progress of application researches of porous fiber metals, Materials. 4 (2011) 816-824.
DOI: 10.3390/ma4040816
Google Scholar
[2]
W. Zhou, Y. Tang, M.Q. Pan, J.H. Xiang, Z.P. Wan, Research progress of manufacturing technology and application of porous metal fiber sintered sheet, Mater Rev. 24 (2010) 5-9.
Google Scholar
[3]
E. Reichelt, M.P. Heddrich, M. Jahn, A. Michaelis, Fiber based structured materials for catalytic applications, Appl. Catal. A-Gen. 476(2014)78-90.
DOI: 10.1016/j.apcata.2014.02.021
Google Scholar
[4]
L.P. Lefebvre, J. Banhart, D.C. Dunand, Porous metals and metallic foams: current status and recent developments, Adv. Eng. Mater. 10(2010)775-787.
DOI: 10.1002/adem.200800241
Google Scholar
[5]
P.Y. Yi, L.F. Peng, X.M. Lai, J. Ni, A numerical model for predicting gas diffusion layer failure in proton exchange membrane fuel cells, J. Fuel. Cell. Sci. Tech. 8 (2011) 11011.
DOI: 10.1115/1.4002312
Google Scholar
[6]
P.Y. Yi, L.F. Peng, X.M. Lai, M.T. Li, J. Ni, Investigation of sintered stainless steel fiber felt as gas diffusion layer in proton exchange membrane fuel cells, Int. J. Hydrogen. Energ. 37(2012) 11334-11344.
DOI: 10.1016/j.ijhydene.2012.04.161
Google Scholar
[7]
H. F. Wang, F. X. Wang, Z. T. Li, Y. Tang, B. H. Yu, W. Yuan, Experimental investigation on the thermal performance of a heat sink filled with porous metal fiber sintered felt/paraffin composite phase change material, Appl Energ. 176 (2016).
DOI: 10.1016/j.apenergy.2016.05.050
Google Scholar
[8]
W.S. Ling, W. Zhou, R.L. Liu, Q.F. Qiu, J. Liu, Research of double flat thermal conductivity coefficient instrument based on ARM, Appl Therm Eng. 108 (2016) 251-260.
Google Scholar
[9]
C.H. Li, W. Williams, J. Buongiorno, L.W. Hu, G.P. Peterson, Transient and steady-state experimental comparison study of effective thermal conductivity of Al2O3∕ water nanofluids, J. Heat Transfer.130 (2008) 042407.
DOI: 10.1115/1.2789719
Google Scholar
[10]
V. V. Calmidi, R. L. Mahajan, The effective thermal conductivity of high porosity fibrous metal foams, J. Heat Transfer 121(1999) 466-471.
DOI: 10.1115/1.2826001
Google Scholar
[11]
A.N. Abramenko, A.S. Kalinichenko, Y. Burtser, V.A. Kalinichenko, S.A. Tanaeva, I.P. Vasilenko, Determination of the thermal conductivity of foam aluminum, J. Eng. Phys. Thermophys. 72(1999) 369-373.
DOI: 10.1007/bf02699196
Google Scholar
[12]
N. Babcsan, I. Meszaros, N. Hegman, Thermal and electrical conductivity measurements on aluminum foams, Materialwiss. Werkstofftech. 34(2003)391-394.
Google Scholar
[13]
K. Boomsma, D. Poulikakos, On the effective thermal conductivity of a three-dimensionally structured fluid-saturated metal foam, Int. J. Heat Mass Transfer 44 (2001) 827-836.
DOI: 10.1016/s0017-9310(00)00123-x
Google Scholar
[14]
Z. Dai, K. Nawaz, Y.G. Park, J. Bock, A.M. Jacobi, Correcting and extending the Boomsma-Poulikakos effective thermal conductivity model for three-dimensional, fluid-saturated metal foams, Int. Commun. Heat Mass. 37(2010) 575-580.
DOI: 10.1016/j.icheatmasstransfer.2010.01.015
Google Scholar
[15]
J.W. Paek, B.H. Kang, S.Y. Kim, J.M. Hyun, Effective thermal conductivity and permeability of aluminum foam materials 1. Int. J. Thermophys. 21(2000) 453-464.
Google Scholar
[16]
S.T. Hong, D. Herling, R. thinsp, Effects of surface area density of aluminum foams on thermal conductivity of aluminum foam-phase change material composites, Adv. Eng. Mater. 9 (2010) 554-557.
DOI: 10.1002/adem.200700023
Google Scholar
[17]
C.Y. Zhao, T.J. Lu, H.P. Hodson, J.D. Jackson, The temperature dependence of effective thermal conductivity of open-celled steel alloy foams, Mater. Sci. Eng., A. 367 (2004) 123-131.
DOI: 10.1016/j.msea.2003.10.241
Google Scholar
[18]
O. Andersen, C. Kostmann, G. Stephani, G. Korb, Advanced porous structures made from intermetallic and superalloy fibers. In: Proceedings of the 1st international conference on materials processing for properties and performance, Singapore (2002).
Google Scholar
[19]
W. Zhou, Q. Wang, Q. Qiu, Y. Tang, J. Tu, K.S. Hui, Heat and mass transfer characterization of porous copper fiber sintered felt as catalyst support for methanol steam reforming, Fuel. 145 (2015) 136-142.
DOI: 10.1016/j.fuel.2014.12.042
Google Scholar
[20]
E. Solórzano, J.A. Reglero, M.A. Rodríguez-Pérez, D. Lehmhus, M. Wichmann, J.A.D. Saja, An experimental study on the thermal conductivity of aluminium foams by using the transient plane source method, Int. J. Heat Mass Transfer. 51(2008).
DOI: 10.1016/j.ijheatmasstransfer.2007.11.062
Google Scholar
[21]
J. Randrianalisoa, D. Baillis, Thermal conductive and radiative properties of solid foams: Traditional and recent advanced modelling approaches, C. R. Phys. 15 (2014) 683-695.
DOI: 10.1016/j.crhy.2014.09.002
Google Scholar
[22]
P. Kumar, F. Topin, J. Vicente, Determination of effective thermal conductivity from geometrical properties: Application to open cell foams, Int. J. Therm Sci. 81(2014)13-28.
DOI: 10.1016/j.ijthermalsci.2014.02.005
Google Scholar
[23]
X. Huang, Q. Wang, W. Zhou, D. Deng, Y. Zhao, D. Wen, Morphology and transport properties of fibrous porous media, Powder Technol. 283 (2015) 618-626.
DOI: 10.1016/j.powtec.2015.06.015
Google Scholar
[24]
Q. Wang, X. Huang, W. Zhou, J. Li, Three-dimensional reconstruction and morphologic characteristics of porous metal fiber sintered sheet, Mater. Mater Charact. 12(2013) 49-58.
DOI: 10.1016/j.matchar.2013.09.009
Google Scholar
[25]
Z.P. Wan, Y. Tang, Y.J. Liu, W.Y. Liu, High efficient production of slim long metal fibers using bifurcating chip cutting, J. Mater. Process. Tech. 189 (2007) 273- 278.
DOI: 10.1016/j.jmatprotec.2007.01.036
Google Scholar
[26]
Y. Tang, W. Zhou, J.H. Xiang, W.Y. Liu, M.Q. Pan, An innovative fabrication process of porous metal fiber sintered felts with three-dimensional reticulated structure, Mater. Manuf. Process. 25 (2010) 565-571.
DOI: 10.1080/10426910903365752
Google Scholar
[27]
P.S. Liu, H.B. Qing, H.L. Hou, Y.Q. Wang, Y.L. Zhang, EMI shielding and thermal conductivity of a high porosity reticular titanium foam, Mater. Des. 92 (2016) 823-828.
DOI: 10.1016/j.matdes.2015.12.105
Google Scholar