Thermal Conductivity Measurements of Novel Porous Copper Fiber Sintered Sheet

Article Preview

Abstract:

In this work, a porous copper fiber sintered sheet (PCFSS) is fabricated by using a low-temperature solid-phase sintering method. Copper fiber is a raw material that is produced by a cutting method with a multi-tooth tool. A novel reference plate method (RPM) with a steady state heat transfer process is introduced to measure the thermal conductivity of PCFSS. The study involves experimentally investigating the effects of reference plate materials as well as the porosity and porosity gradients of PCFSS on thermal conductivity. The findings indicate that reasonable measurement results of thermal conductivity of PCFSS are obtained when 304 stainless steel is selected as a reference plate material when compared with that in the case of a red copper plate. The thermal conductivity increases with a decrease in the porosities of PCFSS in the approximate range of 70%–90%. With respect to the approximate measuring temperature range of 34°C~58°C, the thermal conductivities of PCFSSs with 70%, 80% and 90% porosities correspond to 25.35 W/(m·°C), 15.01 W/(m·°C) and 11.24 W/(m·°C), respectively. The thermal conductivity of PCFSS with 70%-80%-90% gradient porosity corresponds to 13.43 W/(m·°C), and this value is between 80% and 90% porosity of PCFSS.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

159-168

Citation:

Online since:

October 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z. P. Xi, J. L. Zhu, H. P. Tang, Q. B. Ao, H. Zhi, J.Y. Wang, et al, Progress of application researches of porous fiber metals, Materials. 4 (2011) 816-824.

DOI: 10.3390/ma4040816

Google Scholar

[2] W. Zhou, Y. Tang, M.Q. Pan, J.H. Xiang, Z.P. Wan, Research progress of manufacturing technology and application of porous metal fiber sintered sheet, Mater Rev. 24 (2010) 5-9.

Google Scholar

[3] E. Reichelt, M.P. Heddrich, M. Jahn, A. Michaelis, Fiber based structured materials for catalytic applications, Appl. Catal. A-Gen. 476(2014)78-90.

DOI: 10.1016/j.apcata.2014.02.021

Google Scholar

[4] L.P. Lefebvre, J. Banhart, D.C. Dunand, Porous metals and metallic foams: current status and recent developments, Adv. Eng. Mater. 10(2010)775-787.

DOI: 10.1002/adem.200800241

Google Scholar

[5] P.Y. Yi, L.F. Peng, X.M. Lai, J. Ni, A numerical model for predicting gas diffusion layer failure in proton exchange membrane fuel cells, J. Fuel. Cell. Sci. Tech. 8 (2011) 11011.

DOI: 10.1115/1.4002312

Google Scholar

[6] P.Y. Yi, L.F. Peng, X.M. Lai, M.T. Li, J. Ni, Investigation of sintered stainless steel fiber felt as gas diffusion layer in proton exchange membrane fuel cells, Int. J. Hydrogen. Energ. 37(2012) 11334-11344.

DOI: 10.1016/j.ijhydene.2012.04.161

Google Scholar

[7] H. F. Wang, F. X. Wang, Z. T. Li, Y. Tang, B. H. Yu, W. Yuan, Experimental investigation on the thermal performance of a heat sink filled with porous metal fiber sintered felt/paraffin composite phase change material, Appl Energ. 176 (2016).

DOI: 10.1016/j.apenergy.2016.05.050

Google Scholar

[8] W.S. Ling, W. Zhou, R.L. Liu, Q.F. Qiu, J. Liu, Research of double flat thermal conductivity coefficient instrument based on ARM, Appl Therm Eng. 108 (2016) 251-260.

Google Scholar

[9] C.H. Li, W. Williams, J. Buongiorno, L.W. Hu, G.P. Peterson, Transient and steady-state experimental comparison study of effective thermal conductivity of Al2O3∕ water nanofluids, J. Heat Transfer.130 (2008) 042407.

DOI: 10.1115/1.2789719

Google Scholar

[10] V. V. Calmidi, R. L. Mahajan, The effective thermal conductivity of high porosity fibrous metal foams, J. Heat Transfer 121(1999) 466-471.

DOI: 10.1115/1.2826001

Google Scholar

[11] A.N. Abramenko, A.S. Kalinichenko, Y. Burtser, V.A. Kalinichenko, S.A. Tanaeva, I.P. Vasilenko, Determination of the thermal conductivity of foam aluminum, J. Eng. Phys. Thermophys. 72(1999) 369-373.

DOI: 10.1007/bf02699196

Google Scholar

[12] N. Babcsan, I. Meszaros, N. Hegman, Thermal and electrical conductivity measurements on aluminum foams, Materialwiss. Werkstofftech. 34(2003)391-394.

Google Scholar

[13] K. Boomsma, D. Poulikakos, On the effective thermal conductivity of a three-dimensionally structured fluid-saturated metal foam, Int. J. Heat Mass Transfer 44 (2001) 827-836.

DOI: 10.1016/s0017-9310(00)00123-x

Google Scholar

[14] Z. Dai, K. Nawaz, Y.G. Park, J. Bock, A.M. Jacobi, Correcting and extending the Boomsma-Poulikakos effective thermal conductivity model for three-dimensional, fluid-saturated metal foams, Int. Commun. Heat Mass. 37(2010) 575-580.

DOI: 10.1016/j.icheatmasstransfer.2010.01.015

Google Scholar

[15] J.W. Paek, B.H. Kang, S.Y. Kim, J.M. Hyun, Effective thermal conductivity and permeability of aluminum foam materials 1. Int. J. Thermophys. 21(2000) 453-464.

Google Scholar

[16] S.T. Hong, D. Herling, R. thinsp, Effects of surface area density of aluminum foams on thermal conductivity of aluminum foam-phase change material composites, Adv. Eng. Mater. 9 (2010) 554-557.

DOI: 10.1002/adem.200700023

Google Scholar

[17] C.Y. Zhao, T.J. Lu, H.P. Hodson, J.D. Jackson, The temperature dependence of effective thermal conductivity of open-celled steel alloy foams, Mater. Sci. Eng., A. 367 (2004) 123-131.

DOI: 10.1016/j.msea.2003.10.241

Google Scholar

[18] O. Andersen, C. Kostmann, G. Stephani, G. Korb, Advanced porous structures made from intermetallic and superalloy fibers. In: Proceedings of the 1st international conference on materials processing for properties and performance, Singapore (2002).

Google Scholar

[19] W. Zhou, Q. Wang, Q. Qiu, Y. Tang, J. Tu, K.S. Hui, Heat and mass transfer characterization of porous copper fiber sintered felt as catalyst support for methanol steam reforming, Fuel. 145 (2015) 136-142.

DOI: 10.1016/j.fuel.2014.12.042

Google Scholar

[20] E. Solórzano, J.A. Reglero, M.A. Rodríguez-Pérez, D. Lehmhus, M. Wichmann, J.A.D. Saja, An experimental study on the thermal conductivity of aluminium foams by using the transient plane source method, Int. J. Heat Mass Transfer. 51(2008).

DOI: 10.1016/j.ijheatmasstransfer.2007.11.062

Google Scholar

[21] J. Randrianalisoa, D. Baillis, Thermal conductive and radiative properties of solid foams: Traditional and recent advanced modelling approaches, C. R. Phys. 15 (2014) 683-695.

DOI: 10.1016/j.crhy.2014.09.002

Google Scholar

[22] P. Kumar, F. Topin, J. Vicente, Determination of effective thermal conductivity from geometrical properties: Application to open cell foams, Int. J. Therm Sci. 81(2014)13-28.

DOI: 10.1016/j.ijthermalsci.2014.02.005

Google Scholar

[23] X. Huang, Q. Wang, W. Zhou, D. Deng, Y. Zhao, D. Wen, Morphology and transport properties of fibrous porous media, Powder Technol. 283 (2015) 618-626.

DOI: 10.1016/j.powtec.2015.06.015

Google Scholar

[24] Q. Wang, X. Huang, W. Zhou, J. Li, Three-dimensional reconstruction and morphologic characteristics of porous metal fiber sintered sheet, Mater. Mater Charact. 12(2013) 49-58.

DOI: 10.1016/j.matchar.2013.09.009

Google Scholar

[25] Z.P. Wan, Y. Tang, Y.J. Liu, W.Y. Liu, High efficient production of slim long metal fibers using bifurcating chip cutting, J. Mater. Process. Tech. 189 (2007) 273- 278.

DOI: 10.1016/j.jmatprotec.2007.01.036

Google Scholar

[26] Y. Tang, W. Zhou, J.H. Xiang, W.Y. Liu, M.Q. Pan, An innovative fabrication process of porous metal fiber sintered felts with three-dimensional reticulated structure, Mater. Manuf. Process. 25 (2010) 565-571.

DOI: 10.1080/10426910903365752

Google Scholar

[27] P.S. Liu, H.B. Qing, H.L. Hou, Y.Q. Wang, Y.L. Zhang, EMI shielding and thermal conductivity of a high porosity reticular titanium foam, Mater. Des. 92 (2016) 823-828.

DOI: 10.1016/j.matdes.2015.12.105

Google Scholar