Microstructure and Compressive Properties of Al/Al2O3 Syntactic Foams

Article Preview

Abstract:

Metal matrix syntactic foams with relativity low density (2.03 g/cm3) were prepared by stir casting method. The syntactic foam is comprised of alumina hollow spheres with a diameter range of 1.0-1.5 mm as reinforcement and ZL111 aluminum alloy as matrix. Calcium particles are used to increase the viscosity of the melt to ensure that low density hollow spheres are immersed in the melt. Microstructure characteristics and quasi-static compressive properties of syntactic foams were studied. The hollow spheres were uniformly distributed in the aluminum matrix, and the interface between them was in continuous contact. Compressive stress-strain curve exhibits three distinct stages of deformation: (i) the linear elastic stage; (ii) the plateau area; (iii) final densification stage. The compression strength and plateau stress are 85 MPa and 75 MPa, respectively. The main reasons for the sample failure are the collapse of hollow spheres and the formation of multiple shear bands.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

174-181

Citation:

Online since:

October 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Banhart, Manufacture, characterisation and application of cellular metals and metal foams, Prog. Mater. Sci. 46.6 (2001) 559-632.

DOI: 10.1016/s0079-6425(00)00002-5

Google Scholar

[2] A. Daoud, Synthesis and characterization of novel ZnAl22 syntactic foam composites via casting, Mater. Sci. Eng. A. 488.1 (2008) 281-295.

DOI: 10.1016/j.msea.2007.11.020

Google Scholar

[3] S.B. Bonabi, J.K. Khabushan, R. Kahani, A.H. Raouf, Fabrication of metallic composite foam using ceramic porous spheres Light Expanded Clay Aggregate, via casting process, Mater. Des. 64 (2014) 310-315.

DOI: 10.1016/j.matdes.2014.07.061

Google Scholar

[4] G. Castro, S.R. Nutt, X. Wenchen, Compression and low-velocity impact behavior of aluminum syntactic foam, Mater. Sci. Eng. A. 578 (2013) 222-229.

DOI: 10.1016/j.msea.2013.04.081

Google Scholar

[5] Y. Lin, Q. Zhang, X. Ma, G. Wu, Mechanical behavior of pure Al and Al–Mg syntactic foam composites containing glass cenospheres, Composites Part A. 87 (2016) 194-202.

DOI: 10.1016/j.compositesa.2016.05.001

Google Scholar

[6] D.D. Luong, O.M. Strbik, V.H. Hammond, N. Gupta, K. Cho, Development of high performance lightweight aluminum alloy/SiC hollow sphere syntactic foams and compressive characterization at quasi-static and high strain rates, J. Alloys Compd. 550 (2013).

DOI: 10.1016/j.jallcom.2012.10.171

Google Scholar

[7] B.P. Neville, A. Rabiei, Composite metal foams processed through powder metallurgy, Mater. Des. 29.2 (2008) 388-396.

DOI: 10.1016/j.matdes.2007.01.026

Google Scholar

[8] A. Szlancsik, B. Katona, K. Bobor, K. Májlinger, I.N. Orbulov, Compressive behaviour of aluminium matrix syntactic foams reinforced by iron hollow spheres, Mater. Des. 83 (2015) 230-237.

DOI: 10.1016/j.matdes.2015.06.011

Google Scholar

[9] M. Taherishargh, I.V. Belova, G.E. Murch, T. Fiedler, Low-density expanded perlite–aluminium syntactic foam, Mater. Sci. Eng. A. 604 (2014) 127-134.

DOI: 10.1016/j.msea.2014.03.003

Google Scholar

[10] C.A. Vogiatzis, A. Tsouknidas, D.T. Kountouras, S. Skolianos, Aluminum–ceramic cenospheres syntactic foams produced by powder metallurgy route, Mater. Des. 85 (2015) 444-454.

DOI: 10.1016/j.matdes.2015.06.154

Google Scholar

[11] K. Myers, B. Katona, P. Cortes, I.N. Orbulov, Quasi-static and high strain rate response of aluminum matrix syntactic foams under compression, Composites Part A. 79 (2015) 82-91.

DOI: 10.1016/j.compositesa.2015.09.018

Google Scholar

[12] M.Y. Omar, C. Xiang, N. Gupta, O.M. Strbik, K. Cho, Syntactic foam core metal matrix sandwich composite: compressive properties and strain rate effects, Mater. Sci. Eng. A. 643 (2015) 156-168.

DOI: 10.1016/j.msea.2015.07.033

Google Scholar

[13] F. Pan, D. Zhang, Aluminum alloy and application, first ed., Chemical Industry Press, Beijing, (2006).

Google Scholar

[14] J.A. Santa Maria, B.F. Schultz, J.B. Ferguson, P.K. Rohatgi, Al–Al2O3 syntactic foams–Part I: Effect of matrix strength and hollow sphere size on the quasi-static properties of Al-A206/Al2O3 syntactic foams, Mater. Sci. Eng. A. 582 (2013).

DOI: 10.1016/j.msea.2013.05.081

Google Scholar

[15] L. Ma, Z. Song, Cellular structure control of aluminium foams during foaming process of aluminium melt, Scripta Mater. 39.11 (1998) 1523-1528.

DOI: 10.1016/s1359-6462(98)00361-3

Google Scholar

[16] L. Licitra, D.D. Luong, O.M. Strbik, N. Gupta, Dynamic properties of alumina hollow particle filled aluminum alloy A356 matrix syntactic foams, Mater. Des. 66 (2015) 504-515.

DOI: 10.1016/j.matdes.2014.03.041

Google Scholar