[1]
J. Banhart, Manufacture, characterisation and application of cellular metals and metal foams, Prog. Mater. Sci. 46.6 (2001) 559-632.
DOI: 10.1016/s0079-6425(00)00002-5
Google Scholar
[2]
A. Daoud, Synthesis and characterization of novel ZnAl22 syntactic foam composites via casting, Mater. Sci. Eng. A. 488.1 (2008) 281-295.
DOI: 10.1016/j.msea.2007.11.020
Google Scholar
[3]
S.B. Bonabi, J.K. Khabushan, R. Kahani, A.H. Raouf, Fabrication of metallic composite foam using ceramic porous spheres Light Expanded Clay Aggregate, via casting process, Mater. Des. 64 (2014) 310-315.
DOI: 10.1016/j.matdes.2014.07.061
Google Scholar
[4]
G. Castro, S.R. Nutt, X. Wenchen, Compression and low-velocity impact behavior of aluminum syntactic foam, Mater. Sci. Eng. A. 578 (2013) 222-229.
DOI: 10.1016/j.msea.2013.04.081
Google Scholar
[5]
Y. Lin, Q. Zhang, X. Ma, G. Wu, Mechanical behavior of pure Al and Al–Mg syntactic foam composites containing glass cenospheres, Composites Part A. 87 (2016) 194-202.
DOI: 10.1016/j.compositesa.2016.05.001
Google Scholar
[6]
D.D. Luong, O.M. Strbik, V.H. Hammond, N. Gupta, K. Cho, Development of high performance lightweight aluminum alloy/SiC hollow sphere syntactic foams and compressive characterization at quasi-static and high strain rates, J. Alloys Compd. 550 (2013).
DOI: 10.1016/j.jallcom.2012.10.171
Google Scholar
[7]
B.P. Neville, A. Rabiei, Composite metal foams processed through powder metallurgy, Mater. Des. 29.2 (2008) 388-396.
DOI: 10.1016/j.matdes.2007.01.026
Google Scholar
[8]
A. Szlancsik, B. Katona, K. Bobor, K. Májlinger, I.N. Orbulov, Compressive behaviour of aluminium matrix syntactic foams reinforced by iron hollow spheres, Mater. Des. 83 (2015) 230-237.
DOI: 10.1016/j.matdes.2015.06.011
Google Scholar
[9]
M. Taherishargh, I.V. Belova, G.E. Murch, T. Fiedler, Low-density expanded perlite–aluminium syntactic foam, Mater. Sci. Eng. A. 604 (2014) 127-134.
DOI: 10.1016/j.msea.2014.03.003
Google Scholar
[10]
C.A. Vogiatzis, A. Tsouknidas, D.T. Kountouras, S. Skolianos, Aluminum–ceramic cenospheres syntactic foams produced by powder metallurgy route, Mater. Des. 85 (2015) 444-454.
DOI: 10.1016/j.matdes.2015.06.154
Google Scholar
[11]
K. Myers, B. Katona, P. Cortes, I.N. Orbulov, Quasi-static and high strain rate response of aluminum matrix syntactic foams under compression, Composites Part A. 79 (2015) 82-91.
DOI: 10.1016/j.compositesa.2015.09.018
Google Scholar
[12]
M.Y. Omar, C. Xiang, N. Gupta, O.M. Strbik, K. Cho, Syntactic foam core metal matrix sandwich composite: compressive properties and strain rate effects, Mater. Sci. Eng. A. 643 (2015) 156-168.
DOI: 10.1016/j.msea.2015.07.033
Google Scholar
[13]
F. Pan, D. Zhang, Aluminum alloy and application, first ed., Chemical Industry Press, Beijing, (2006).
Google Scholar
[14]
J.A. Santa Maria, B.F. Schultz, J.B. Ferguson, P.K. Rohatgi, Al–Al2O3 syntactic foams–Part I: Effect of matrix strength and hollow sphere size on the quasi-static properties of Al-A206/Al2O3 syntactic foams, Mater. Sci. Eng. A. 582 (2013).
DOI: 10.1016/j.msea.2013.05.081
Google Scholar
[15]
L. Ma, Z. Song, Cellular structure control of aluminium foams during foaming process of aluminium melt, Scripta Mater. 39.11 (1998) 1523-1528.
DOI: 10.1016/s1359-6462(98)00361-3
Google Scholar
[16]
L. Licitra, D.D. Luong, O.M. Strbik, N. Gupta, Dynamic properties of alumina hollow particle filled aluminum alloy A356 matrix syntactic foams, Mater. Des. 66 (2015) 504-515.
DOI: 10.1016/j.matdes.2014.03.041
Google Scholar