The Compressive Properties of Open-Cell Zn-22Al Foams with Spheroidal Pore at Different Temperatures

Article Preview

Abstract:

Open-cell Zn-22Al foams with different porosities were fabricated by replication process using spheroidal CaCl2 particles as space holder. A series of compressive tests were carried out at different temperatures (i.e., room temperature, 100 °C and 200 °C). The effect of porosity and testing temperature on compressive property and energy absorption characteristic of Zn-22Al foams were studied. The experimental results showed that the compressive properties of the foams are dependent on porosity and testing temperature: the compressive yield stress decreases with the increasing testing temperature and the porosity; In addition, the energy absorption capacity also decreases with the increasing temperature and porosity; Moreover, Gibson-Ashby model can be used to describe the relationship between relative yield stress and relative density of the foams.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

196-202

Citation:

Online since:

October 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Daoud, Synthesis and characterization of novel ZnAl22 syntactic foam composites via casting, Mater. Sci. Eng. A 488 (2008) 281-295.

DOI: 10.1016/j.msea.2007.11.020

Google Scholar

[2] S. R. Casolco, G. Dominguez, D. Sandoval, J.E. Garay, Processing and mechanical behavior of Zn-Al-Cu porous alloys, Mater. Sci. Eng. A 471 (2007) 28-33.

DOI: 10.1016/j.msea.2007.03.009

Google Scholar

[3] M. Lafrance, M. Isac, F. Jalilian, K.E. Waters, R.A.L. Drew, The reactive stabilization of Al-Zn foams using a powder metallurgy approach, Mater. Sci. Eng. A 528 (2011) 6497-6503.

DOI: 10.1016/j.msea.2011.05.020

Google Scholar

[4] P. H. Thornton, C.L. Magee, Deformation characteristics of Zinc foam, Metall. Trans. A 6(1975) 1801-1807.

Google Scholar

[5] J. A. Aragon-Lezama, A. Garcia-Borquez, G. Torres-Villaseñor, Foam behavior of solid glass spheres-Zn22Al2Cu composites under compression stresses, Mater. Sci. Eng. A 638 (2015) 165-173.

DOI: 10.1016/j.msea.2015.04.048

Google Scholar

[6] A. Daoud, Effect of strain rate on compressive properties of novel Zn12Al based composite foams containing hybrid pores, Mater. Sci. Eng. A 525 (2009) 7-17.

DOI: 10.1016/j.msea.2009.05.038

Google Scholar

[7] A. Heydariastaraie, H.R. Shahverdi, S.H. Elahi, Compressive behavior of Zn-22Al closed-cell foams under uniaxial quasi-static loading, Trans. Nonferrous Met. Soc. China 24 (2014) 162-169.

DOI: 10.1016/s1003-6326(15)63591-9

Google Scholar

[8] S. Sadighiki, S. Abdolhosseinzadeh, H. Asgharzadeh, Production of high porosity Zn foams by powder metallurgy method, Powd. Metall. 58 (2015) 61-66.

DOI: 10.1179/1743290114y.0000000109

Google Scholar

[9] A. Sánchez-Martínez, A. Cruz, M. González-Nava, M.A. Suárez, Main process parameters for manufacturing open-cell Zn-22Al-2Cu foams by the centrifugal infiltration route and mechanical properties, Mater. Des. 108 (2016) 494-500.

DOI: 10.1016/j.matdes.2016.07.032

Google Scholar

[10] K. Kitazono, Y. Takiguchi, Strain rate sensitivity and energy absorption of Zn-22Al foams, Scr. Mater. 55(2006) 501-504.

DOI: 10.1016/j.scriptamat.2006.06.001

Google Scholar

[11] C. M. Cady, G.T. Gray III, C. Liu, M.L. Lovato, T. Mukai, Compressive properties of a closed-cell aluminum foam as a function of strain rate and temperature, Mater. Sci. Eng. A 525 (2009) 1-6.

DOI: 10.1016/j.msea.2009.07.007

Google Scholar

[12] S. Sahu, M.D. Goel, D.P. Mondal, S. Das, High temperature compressive deformation behavior of ZA27-SiC foam, Mater. Sci. Eng. A 607 (2014) 162-172.

DOI: 10.1016/j.msea.2014.04.004

Google Scholar

[13] P. Wang, S. Xu, Z. Li, J. Yang , H. Zheng, S. Hu, Temperature effects on the mechanical behavior of aluminum foam under dynamic loading, Mater. Sci. Eng. A 509 (2014) 174-179.

DOI: 10.1016/j.msea.2014.01.076

Google Scholar

[14] M. S. Aly, Behavior of closed cell aluminium foams upon compressive testing at elevated temperatures: Experimental results, Mater. Lett. 61 (2007) 3138-3141.

DOI: 10.1016/j.matlet.2006.11.046

Google Scholar

[15] J. Liu, Q. Qu, Y. Liu, R. Li, B. Liu, Compressive properties of Al-Si-SiC composite foams at elevated temperatures, J. Alloy. Compd. 676 (2016) 239-244.

DOI: 10.1016/j.jallcom.2016.03.076

Google Scholar

[16] L. J. Gibson, M.F. Ashby, Cellular solids: structure and properties, second ed., Cambridge University Press, Oxford, (1997).

Google Scholar

[17] S. Yu, J. Liu, M. Wei, Y. Luo, X. Zhu, Y. Liu, Compressive property and energy absorption characteristic of open-cell ZA22 foams, Mater. Des. 30 (2009) 87-90.

DOI: 10.1016/j.matdes.2008.04.041

Google Scholar

[18] J. Liu, S. Yu, X. Zhu, M. Wei, Y Luo, Y. Liu, The compressive properties of closed-cell Zn-22Al foams, Mater. Lett. 62 (2008) 683-685.

DOI: 10.1016/j.matlet.2007.06.032

Google Scholar