Structural Loading of Cellular Metals: Damage Mechanisms and Standardization Concepts

Article Preview

Abstract:

Structural loading of cellular metals is strongly affected by brittle fracture of cell struts and walls that exhibit tensile loads, e.g., during fatigue loading. The present paper summarizes results of compression, tension and cyclic loading experiments on various closed-cell metal foams and metal foam sandwiches (Alulight, Alporas, Foamtech, AFS) using various mechanical testing systems. The results were correlated with a thorough analysis of the cellular mesostructure and the cell strut/wall microstructure by means of scanning electron microscopy revealing defects, such as casting porosity and large Si precipitates in the Al-Si eutectic of aluminum cast alloy. The results of the work served for the definition of testing standards for compression testing (ISO 13314) and tensile testing (DIN 50099), which are outlined in the paper. Such standards and design guidelines are crucial for a successful implementation of cellular metals in innovative products in mechanical, automotive and energy engineering as well as in bioengineering.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

220-225

Citation:

Online since:

October 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] U. Krupp, A. Ohrndorf, T. Guillén, H.-J. Christ, S. Demiray, J. Hohe, W. Becker, Adv. Engng. Mater, 8 (2006) 821-827.

DOI: 10.1002/adem.200600081

Google Scholar

[2] T. Böllinghaus, H. von Hagen, W. Bleck, Mater.-wiss. u. Werkstofftech. 31, 488-492 (2000).

DOI: 10.1002/1521-4052(200006)31:6<488::aid-mawe488>3.0.co;2-x

Google Scholar

[3] B. Zettl, S. Stanzl-Tschegg, Mater.-wiss. u. Werkstofftech. 31, 484-487 (2000).

DOI: 10.1002/1521-4052(200006)31:6<484::aid-mawe484>3.0.co;2-c

Google Scholar

[4] L. J. Gibson, M. F. Ashby, Cellular Solids, 2nd edition, Cambridge Univ. Press, Cambridge, (1997).

Google Scholar

[5] C. Motz, O. Friedl, R. Pippan, Int. J. Fatigue, 27 (2005) 1571-1581.

Google Scholar

[6] O.B. Olurin, K.Y.G. McCullough, N.A. Fleck, M.F. Ashby, Int. J. Fatigue, 23 (2001) 375-382.

Google Scholar

[7] S. Nesic, P. Schäffler, K. Unruh, T. Hipke, W. Michels, U. Krupp: Adv. Engng. Mater, 13 (2011) 1056-1060.

Google Scholar

[8] U. Krupp, P. Poltersdorf, S. Nesic, J. Baumeister, J. Weise, Mater.-wiss. u. Werkstofftech. 45 (2014) 1092-1098.

DOI: 10.1002/mawe.201400357

Google Scholar

[9] S. Nesic, Characteristics of the behavior of cellular metals under monotonic and cyclic loading conditions, doctorate thesis, Schriftenreihe Materialdesign und Werkstoffzuver-lässigkeit (U. Krupp, ed.), Shaker Verlag, Aachen (2016).

Google Scholar

[10] U. Krupp, J. Aeggerter, A. Ohrndorf, T. Guillen, A. Danninger, T. Hipke, J. Hohlfeld, M. Reinfried, Proc. MetFoam 2007, Montreal (2007).

Google Scholar