Impact Toughness of Closed-Cell Aluminum Foam

Article Preview

Abstract:

The impact toughness of closed-cell aluminum foam with various densities was investigated. The impact load history revealed an elastic region followed by a rapid load drop region. The peak load and impact toughness of aluminum foam increases exponentially with density. The power exponents for impact toughness test are greater than that for compressive test. Fracture analysis indicated a mixed-rupture mode of quasi-cleavage and small shallow dimples. It can be attributed to the complex state of stress of notched specimens and elevated impact velocity under impact loading.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

203-208

Citation:

Online since:

October 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Amsterdam, J.H.B. de Vries, J.Th.M. De Hosson, P.R. Onck, The influence of strain-induced damage on the mechanical response of open-cell aluminum foam. Acta Mater. 56 (2008) 609-620.

DOI: 10.1016/j.actamat.2007.10.034

Google Scholar

[2] E. Amsterdam, J.Th.M. De Hosson, P.R. Onck, On the plastic collapse stress of. open-cell aluminum foam. Scripta Mater. 59 (2008) 653-658.

DOI: 10.1016/j.scriptamat.2008.05.025

Google Scholar

[3] Wen-Yea Jang, Stelios Kyriakides, On the crushing of aluminum open-cell foams: Part I. Experiments. Int. J. Solids Struct. 46 (2009) 617-634.

DOI: 10.1016/j.ijsolstr.2008.09.008

Google Scholar

[4] Wen-Yea Jang, Stelios Kyriakides, On the crushing of aluminum open-cell foams: Part II analysis. Int. J. Solids Struct. 46 (2009) 635-650.

DOI: 10.1016/j.ijsolstr.2008.10.016

Google Scholar

[5] P.J. Tan, S.R. Reid, J.J. Harrigan, On the dynamic mechanical properties of open-cell metal foams-A re-assessment of the simple-shock theory,. Int. J. Solids Struct. 49 (2012) 2744-2753.

DOI: 10.1016/j.ijsolstr.2012.03.026

Google Scholar

[6] R.P. Merrett, G.S. Langdon, M.D. Theobald, The blast and impact loading of aluminium foam. Mater. Design 44 (2013) 311-319.

DOI: 10.1016/j.matdes.2012.08.016

Google Scholar

[7] G. Castro, S.R. Nutt a, X. Wenchen, Compression and low-velocity impact behavior of aluminum syntactic foam. Mater. Sci. Eng. A 578 (2013) 222-229.

DOI: 10.1016/j.msea.2013.04.081

Google Scholar

[8] M. Saadatfar, M. Mukherjee, M. Madadi, G.E. Schro der-Turk, F. Garcia-Moreno, F.M. Schaller, S. Hutzler, A.P. Sheppard, J. Banhart, u. Ramamurty. Structure and deformation correlation of closed cell aluminium foam subject to uniaxial compression. Acta mater. 60 (2012).

DOI: 10.1016/j.actamat.2012.02.029

Google Scholar

[9] M. Mukherjee, U. Ramamurty, F. Garcia-Moreno, J. Banhart, Solidification of metal foams. Acta Mater. 58 (2010) 5031-5042.

DOI: 10.1016/j.actamat.2010.05.039

Google Scholar

[10] X.F. Tao, Y.Y. Zhao, Compressive failure of Al alloy matrix syntactic foams manufactured by melt infiltration. Mater. Sci. Eng. A 549 (2012) 228-232.

DOI: 10.1016/j.msea.2012.04.047

Google Scholar

[11] Y.L. Mu, G.C. Yao, Z.C. Cao, H.J. Luo, G.Y. Zu, Strain-rate effects on the compressive response of closed-cell copper-coated carbon fiber/aluminum composite foam. Scripta Mater. 64, (2011) 61-64.

DOI: 10.1016/j.scriptamat.2010.09.005

Google Scholar

[12] Y.L. Mu, G.C. Yao, L.S. Liang, H.J. Luo, G.Y. Zu, Deformation mechanisms of closed-cell aluminum foam in compression. Scripta Mater. 63 (2010) 629-632.

DOI: 10.1016/j.scriptamat.2010.05.041

Google Scholar

[13] M. Mukherjee, F. Garcia-Moreno, J. Banhart, Defect generation during solidification of aluminium foams. Scripta Mater. 63 (2010) 235-238.

DOI: 10.1016/j.scriptamat.2010.03.064

Google Scholar

[14] M. Mukherjee, U. Ramamurty, F. Garcia-Moreno, J. Banhart, The effect of cooling rate on the structure and properties of closed-cell aluminium foams. Acta Mater. 58 (2010) 5031-5042.

DOI: 10.1016/j.actamat.2010.05.039

Google Scholar

[15] Y.L. Mu, G.Y. Zu, Z.K. Cao, G.C. Yao, Q.D. Wang, Metal foam stabilization by copper-coated carbon fibers. Scripta Mater. 68 (2013) 459-462.

DOI: 10.1016/j.scriptamat.2012.11.021

Google Scholar

[16] H.J. Yu, G.C. Yao, X.L. Wang, Y.H. Liu, H.B. Li, Sound insulation property of Al–Si closed-cell aluminum foam sandwich panels. App. Acoust. 68 (2007) 1502-1510.

DOI: 10.1016/j.apacoust.2006.07.019

Google Scholar

[17] G.C. Yao, X.M. Zhang, T. Sun, CN Patent 1320, 710, (2001).

Google Scholar

[18] J.F. Kalthoff, Characterization of the dynamic failure behaviour of a glass-fiber/vinyl-ester at different temperatures by means of instrumented Charpy impact testing. Compos. Part B 35 657-663 (2004).

DOI: 10.1016/j.compositesb.2003.11.008

Google Scholar

[19] L.J. Gibson, M.F. Ashby, Cellular Solids: Structure and Properties, Cambridge University Press, (1997).

Google Scholar

[20] P.J. Tan, S.R. Reid, J.J. Harrigan, Z. Zou, S. Li, Dynamic compressive strength properties of aluminium foams. Part II- shock, theory and comparison with experimental data and numerical models. J Mech. Phys. Solids, 53 (2005) 2174-2205.

DOI: 10.1016/j.jmps.2005.05.003

Google Scholar

[21] H.J. Yu, G.C. Yao Y.H. Liu, Tensile property of Al-Si closed-cell aluminum foam. Trans. Nonferrous Met. Soc. China, 16 (2006) 1335-1340.

DOI: 10.1016/s1003-6326(07)60016-8

Google Scholar