[1]
S.G. Chen. Numerical Simulation Analysis on Stamping of Foam Aluminum Sandwich Panels, J. Joural of Dongguan University of Technology,2013,2,20 (1), pp.57-63.
Google Scholar
[2]
C. Chen, N.A. Fleck. Size Effect in the Constrained Deformation of Metallic, J. Journal of the Mechanics and Physics of Solids, 2002,50(5), pp.955-958.
Google Scholar
[3]
I. Elnasri, H. Zhao. Impact perforation of sandwich panels with aluminum foam core: A numerical and analytical study, J. International Journal of Impact Engineering, 2016,96, p.50–60.
DOI: 10.1016/j.ijimpeng.2016.05.013
Google Scholar
[4]
Y. L.Wang, F. Wang, X. H. You, L C Wang. Review of simulation on compressive properties of aluminum foam, J. Light Metals, 2010, (10), pp.64-68.
Google Scholar
[5]
J.Mltz, G.Gruenbaum. Evaluation of cushion properties of plastic foams compressive measurements, J. Polymer Engineering and Science, 1981, 21, pp.1010-1014.
DOI: 10.1002/pen.760211505
Google Scholar
[6]
Potluri P,Kusak E,Reddy T Y.Novel stitch-bonded sandwich composite structures [J],Composite Structures,2003,59(2):251-259.
DOI: 10.1016/s0263-8223(02)00087-9
Google Scholar
[7]
Y. L. Mu, G. C. Yao, L. S. Liang, et al. Deformation mechanisms of closed-cell aluminum foam in compression, J. Scripta Materialia, 2010, 63(6), pp.629-632.
DOI: 10.1016/j.scriptamat.2010.05.041
Google Scholar
[8]
F.Palano, R.Nobile, V.Dattoma, et al. Fatigue behaviour of aluminium foam sandwiches, J. Fatigue and Fracture of Engineering Materials and Structures, 2013, 36(12), pp.1274-1287.
DOI: 10.1111/ffe.12063
Google Scholar
[9]
P.Jasion, K.Magnucki. Global buckling of a sandwich column with metal foam core, J. Journal of Sandwich Structures and Materials, 2013, 15(6), pp.718-732.
DOI: 10.1177/1099636213499339
Google Scholar
[10]
S.B. Basturk, M.Tanoglu. Development and mechanical behavior of FML / aluminium foam sandwiches, J. Applied Composite Materials, 2013, 20(5), pp.789-802.
DOI: 10.1007/s10443-012-9306-3
Google Scholar
[11]
Y.C. Kim, J.U. Cho. Comparative study between impact behaviors of composites with aluminum foam and honeycomb, J. Current Nano science, 2014, 10(1), pp.23-27.
DOI: 10.2174/1573413709999131205152839
Google Scholar
[12]
S.O. Bang, J.U. Cho. A Study on the Compression Property of Sandwich Composite with Porous Core. International journal of precision engineering and manufacturing, J.2015, 16(6), pp.1117-1122.
DOI: 10.1007/s12541-015-0144-8
Google Scholar
[13]
V.Matej, A.S. Mohd, K.O. Lovre. Dynamic compression of aluminium foam derived from infiltration casting of salt dough, J. Mechanics of Materials, 2016, 93, pp.96-108.
DOI: 10.1016/j.mechmat.2015.10.012
Google Scholar
[14]
S.H. Han, Z.H. Lv. Numerical Simulation of Blast resistant Performance of Aluminum Foam Sandwich Structures and Optimzation, J. Acta Arm Amentra II, 2010, 31 (11), pp.1468-1474.
Google Scholar
[15]
A. Rajaneesh, I. Sridhar, S. Rajendran. Impact modeling of foam cored sandwich plates with ductile or brittle faceplates, J. Composite Structures, 2012,94, p.1745–1754.
DOI: 10.1016/j.compstruct.2011.12.021
Google Scholar