Numerical Simulation on the Compression Property in Different Face Sheet of Sandwich Panel Combined with Aluminum Foam

Article Preview

Abstract:

Sandwich face sheets are very important roles in composite materials. It was simulated that the quasi-static compressive crush performances of three types of sandwich sheets by ANSYS/LS-DYNA software. The aluminum top panels (“half hard”) had the higher plateau stress and its absorption energy reached 20.483J/mm3, were superior to the steel top panel (“hard”); the bottom face sheet rarely affects the energy absorption properties in cases.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

351-356

Citation:

Online since:

October 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.G. Chen. Numerical Simulation Analysis on Stamping of Foam Aluminum Sandwich Panels, J. Joural of Dongguan University of Technology,2013,2,20 (1), pp.57-63.

Google Scholar

[2] C. Chen, N.A. Fleck. Size Effect in the Constrained Deformation of Metallic, J. Journal of the Mechanics and Physics of Solids, 2002,50(5), pp.955-958.

Google Scholar

[3] I. Elnasri, H. Zhao. Impact perforation of sandwich panels with aluminum foam core: A numerical and analytical study, J. International Journal of Impact Engineering, 2016,96, p.50–60.

DOI: 10.1016/j.ijimpeng.2016.05.013

Google Scholar

[4] Y. L.Wang, F. Wang, X. H. You, L C Wang. Review of simulation on compressive properties of aluminum foam, J. Light Metals, 2010, (10), pp.64-68.

Google Scholar

[5] J.Mltz, G.Gruenbaum. Evaluation of cushion properties of plastic foams compressive measurements, J. Polymer Engineering and Science, 1981, 21, pp.1010-1014.

DOI: 10.1002/pen.760211505

Google Scholar

[6] Potluri P,Kusak E,Reddy T Y.Novel stitch-bonded sandwich composite structures [J],Composite Structures,2003,59(2):251-259.

DOI: 10.1016/s0263-8223(02)00087-9

Google Scholar

[7] Y. L. Mu, G. C. Yao, L. S. Liang, et al. Deformation mechanisms of closed-cell aluminum foam in compression, J. Scripta Materialia, 2010, 63(6), pp.629-632.

DOI: 10.1016/j.scriptamat.2010.05.041

Google Scholar

[8] F.Palano, R.Nobile, V.Dattoma, et al. Fatigue behaviour of aluminium foam sandwiches, J. Fatigue and Fracture of Engineering Materials and Structures, 2013, 36(12), pp.1274-1287.

DOI: 10.1111/ffe.12063

Google Scholar

[9] P.Jasion, K.Magnucki. Global buckling of a sandwich column with metal foam core, J. Journal of Sandwich Structures and Materials, 2013, 15(6), pp.718-732.

DOI: 10.1177/1099636213499339

Google Scholar

[10] S.B. Basturk, M.Tanoglu. Development and mechanical behavior of FML / aluminium foam sandwiches, J. Applied Composite Materials, 2013, 20(5), pp.789-802.

DOI: 10.1007/s10443-012-9306-3

Google Scholar

[11] Y.C. Kim, J.U. Cho. Comparative study between impact behaviors of composites with aluminum foam and honeycomb, J. Current Nano science, 2014, 10(1), pp.23-27.

DOI: 10.2174/1573413709999131205152839

Google Scholar

[12] S.O. Bang, J.U. Cho. A Study on the Compression Property of Sandwich Composite with Porous Core. International journal of precision engineering and manufacturing, J.2015, 16(6), pp.1117-1122.

DOI: 10.1007/s12541-015-0144-8

Google Scholar

[13] V.Matej, A.S. Mohd, K.O. Lovre. Dynamic compression of aluminium foam derived from infiltration casting of salt dough, J. Mechanics of Materials, 2016, 93, pp.96-108.

DOI: 10.1016/j.mechmat.2015.10.012

Google Scholar

[14] S.H. Han, Z.H. Lv. Numerical Simulation of Blast resistant Performance of Aluminum Foam Sandwich Structures and Optimzation, J. Acta Arm Amentra II, 2010, 31 (11), pp.1468-1474.

Google Scholar

[15] A. Rajaneesh, I. Sridhar, S. Rajendran. Impact modeling of foam cored sandwich plates with ductile or brittle faceplates, J. Composite Structures, 2012,94, p.1745–1754.

DOI: 10.1016/j.compstruct.2011.12.021

Google Scholar