[1]
L.J. Gibson, M.F. Ashby, Cellular Solids: Structure and Properties, second ed., Cambridge: Cambridge University Press, (1999).
Google Scholar
[2]
M. Ashby, Metal Foams: A Design Guide, Boston: Butterworth-Heinemann, (2000).
Google Scholar
[3]
J. Banhart, Manufacture, Characterisation and Application of Cellular Metals and Metal foams, Prog. Mater. Sci., 46 (2001) 559.
DOI: 10.1016/s0079-6425(00)00002-5
Google Scholar
[4]
A.J. Fuller, T. Kim, H.P. Hodson, T.J. Lu, Measurement and Interpretation of the Heat Transfer Coefficients of Metal Foams, Proc. IMechE, 219 (2005) 183-191.
Google Scholar
[5]
G. Hetsroni, M. Gurevich, R. Rozenblit, Sintered Porous medium Heat Sink for Cooling of High-power Mini-devices, Int. J. Heat Fluid Fl., 27 (2006) 259-266.
DOI: 10.1016/j.ijheatfluidflow.2005.08.005
Google Scholar
[6]
K. Boomsma, D. Poulikakos, F. Zwick, Metal Foams as Compact High Performance Heat Exchangers, Mech. Mater., 35 (2003) 1161-1176.
DOI: 10.1016/j.mechmat.2003.02.001
Google Scholar
[7]
M. Wong, I. Owen, C.J. Sutcliffe, A. Puri, Convective Heat Transfer and Pressure Losses across Novel Heat Sinks Fabricated by Selective Laser Melting, Int. J. Heat Mass Tran., 52 (2009) 281-288.
DOI: 10.1016/j.ijheatmasstransfer.2008.06.002
Google Scholar
[8]
Y.Y. Zhao, T. Fung, L.P. Zhang, Lost Carbonate Sintering Prosciee for Manufacturing Metal Foams, Scr. Mater., 52 (2005) 295.
DOI: 10.1016/j.scriptamat.2004.10.012
Google Scholar
[9]
L.P. Zhang, D. Muulen, K. Lynn, Y.Y. Zhao, Heat transfer performance of porous copper fabricated by the Lost Carbonate Sintering process, Mater. Res. Soc. Symp. Proc., 1188 (2009) 07.
DOI: 10.1557/proc-1188-ll04-07
Google Scholar
[10]
Z. Xiao, Y.Y. Zhao, Heat transfer coefficient of porous copper with homogeneous and hybrid structures in active cooling, J. Mater. Res., 28 (2013) 2545.
DOI: 10.1557/jmr.2013.190
Google Scholar
[11]
Z. Xiao, Y.Y. Zhao, Thermal properties of porous copper manufactured by lost carbonate sintering, Mater. Sci. Forum,783-786 (2014) 1603-1608.
DOI: 10.4028/www.scientific.net/msf.783-786.1603
Google Scholar
[12]
W. Zhou, Y. Tang, M. Pan, X. Wei, H. Chen, J. Xiang, A performance study of methanol steam reforming microreactor with porous copper fiber sintered felt as catalyst support for fuel cells, Int. J. Hydrogen Energ., 34 (2009) 9745-9753.
DOI: 10.1016/j.ijhydene.2009.10.009
Google Scholar
[13]
W. Zhou, Q. Wang, Q. Qiu, Y. Tnag, J. Tu, K.S. Hui, K.N. Hui, Heat and mass transfer characterization of porous copper fiber sintered felt as catalyst support for methanol steam reforming, Fuel, 145 (2015) 136-142.
DOI: 10.1016/j.fuel.2014.12.042
Google Scholar
[14]
D.J. Thewsey, Y.Y. Zhao, Thermal conductivity of porous copper manufactured by the lost carbonate sintering process, Phys. Status Solidi A, 205 (2008) 1126-1131.
DOI: 10.1002/pssa.200723121
Google Scholar
[15]
K. Diao, L.P. Zhang, Y.Y. Zhao, Measurement of tortuosity of porous Cu using a diffusion diaphragm cell, Measurement, 110 (2017) 335-338.
DOI: 10.1016/j.measurement.2017.07.014
Google Scholar
[16]
F. Agyenim, The use of enhanced heat transfer phase change materials (PCM) to improve the coefficient of performance (COP) of solar powered LiBr/H2O absorption cooling systems, Renew. Energ., 87 (2016) 229-239.
DOI: 10.1016/j.renene.2015.10.012
Google Scholar
[17]
Z. Zhuang, G. Li, Y. Zhang, Y. Li, Optimization study on the heat transfer area of the sewage source heat pump system based on year-round coefficient of performance, Procedia Eng., 121 (2015) 1535-1543.
DOI: 10.1016/j.proeng.2015.09.132
Google Scholar
[18]
D. Humphrey, L. Condra, N. Pendse, D. Das, C. Wilkinson, M. Pecht, An avionics guide to uprating of electronic parts, IEEE T. Compon. Pack. T., 23 (2000) 595-599.
DOI: 10.1109/6144.868863
Google Scholar