Modification of the Collagen Tissue of the Bioprothesis of Heart Valves in a Solution of Carbonic Acid: Effect of Pressure on Adsorption of Chitosan and the Structure of the Tissue

Article Preview

Abstract:

For the first time the influence of pressure of chitosan solutions in carbonic acid on the adsorption of chitosan onto a collagen tissue of biological heart-valve prostheses and on the structure of the resulting biocomposite was studied. It turned out that the dependence of an amount of the chitosan adsorbed onto the collagen tissue has bell-shaped form reaching a maximum adsorption of about 0.8 weight. % at 30-40 MPa and then falling to 0.3 wt. % with further pressure increase up to 50 MPa. It was found that this treatment leads to a significant change of the morphology of the tissue surface which depends on the pressure in the system. It was also revealed that under pressure growth collagen fibrils are compacted in the tissue bulk which leads to the extrusion of the polymer embedded in the collagen matrix.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

100-107

Citation:

Online since:

October 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. C. Cannegieter, F. R. Rosendaal, E. Briët, Thromboembolic and bleeding complications in patients with mechanical heart valve prostheses, J. Circulation. 89 (1994) 635–641.

DOI: 10.1161/01.cir.89.2.635

Google Scholar

[2] P. D. Stein, J. S. Alpert, H. I. Bussey, J. E. Dalen, A. G. G. Turpie, Antithrombotic therapy in patients with mechanical or biological prosthetic heart valves, J. Chest. 119 (2001) 220–227.

DOI: 10.1378/chest.119.1_suppl.220s

Google Scholar

[3] R. F. Siddiqui, J. R. Abraham, J. Butany, Bioprosthetic heart valves: modes of failure, J. Histopathology. 55 (2001) 135–144.

DOI: 10.1111/j.1365-2559.2008.03190.x

Google Scholar

[4] F. J. Schoen, J. W. Tsao, R. J. Levy, Calcification of bovine pericardium used in cardiac valve bioprostheses, Am. J. Pathol. 123 (1986) 134–145.

Google Scholar

[5] J. Chanda, Anticalcification treatment of pericardial prostheses, Biomaterials. 15 (1994) 465–469.

DOI: 10.1016/0142-9612(94)90226-7

Google Scholar

[6] G. Nogueira, A. Rodas, R. Weska, C. Aimoli, O. Higa, M. Maizato, A. Leiner, R. Pitombo, B. Polakiewicz, M. Beppu, Bovine pericardium coated with biopolymeric films as an alternative to prevent calcification: in vitro calcification and cytotoxicity results, Mater. Sci. Eng.C. 30 (2010).

DOI: 10.1016/j.msec.2010.02.011

Google Scholar

[7] M. O. Gallyamov, I. S. Chaschin, M. A. Khokhlova, T. E. Grigorev, N. P. Bakuleva, I. G. Lyutova, J. E. Kondratenko, G. A. Badun, M. G. Chernysheva, A. R. Khokhlov, Collagen tissue treated with chitosan solutions in carbonic acid for improved biological prosthetic heart valves, Mater. Sci. Eng. C. 37 (2014).

DOI: 10.1016/j.msec.2014.01.017

Google Scholar

[8] G. A. Badun, M. G. Chernysheva, A. L. Ksenofontov, Increase in the specific radioactivity of tritium-labeled compounds obtained by tritium thermal activation method, Radiochim. Acta. 100 (2012) 401–408.

DOI: 10.1524/ract.2012.1926

Google Scholar

[9] A. S. Kashin, V. P. Ananikov, A SEM study of nanosized metal films and metal nanoparticles obtained by magnetron sputtering, Russ. Chem. Bull. 60 (2011) 2602–2607.

DOI: 10.1007/s11172-011-0399-x

Google Scholar

[10] M. H. Santos, R. M. Silva, V. C. Dumont, J. S. Neves, H. S. Mansur, L. G. D. Heneine, Extraction and characterization of highly purified collagen from bovine pericardiumfor potential bioengineering applications, Mater. Sci. Eng. C. 33 (2013).

DOI: 10.1016/j.msec.2012.11.003

Google Scholar

[11] W. Sun, M. Sacks, G. Fulchiero, J. Lovekamp, N. Vyavahare, M. Scott, Response of heterograft heart valve biomaterials to moderate cyclic loading, J. Biomed. Mater. Res. 69 (2004) 658–669.

DOI: 10.1002/jbm.a.30031

Google Scholar

[12] F. G. Pearson, R. H. Marchessault, C. Y. Liang, Infrared spectra of crystalline polysaccharides. V. Chitin, J. Polym. Sci. 43 (1960) 101–116.

DOI: 10.1002/pol.1960.1204314109

Google Scholar

[13] D. J. S. Hulmes, Building collagen molecules, fibrils, and suprafibrillar structures, J. Struct. Biol. 137 (2002) 2–10.

DOI: 10.1006/jsbi.2002.4450

Google Scholar

[14] G. S. Al-Saidi, A. Al-Alawi, M. S. Rahman, N. Guizani, Fourier transform infrared (FTIR) spectroscopic study of extracted gelatin from shaari (Lithrinusmicrodon) skin: effects of extraction conditions, Int. Food Res. 19 (2012) 1167—1173.

DOI: 10.1007/s10973-010-1240-8

Google Scholar