Oxygen Reduction Effect on T’-Pr2-xCexCuO4 Nanopowders in the Underdoped Regime Studied by X-Ray Absorption near Edge Structure

Abstract:

Article Preview

This research is aimed to examine oxidation state of Copper (Cu) in both as-synthesized and reduced T’-Pr2-xCexCuO4 (T’-PCCO) with x = 0, 0.10, and 0.15 using Cu K-edge x-ray absorption near edge structure (XANES). The T‘-PCCO nanopowders were successfully synthesized by the chemically dissolved method with HNO3 as a dissolving agent continued by calcination at 1000°C for 15 h. The reduced T’-PCCO nanopowders were obtained by reduction annealing process at 700°C for 5 h under Ar gas atmosphere. The analyses of XANES spectra show that oxidation states of the Cu ions in all of the T'-PCCO nanopowders have values between +1 and +2. This indicates the existence of electron doping in the CuO2 planes, even in the undoped T’-structure. It is found that the oxidation states of the Cu ions change after reduction annealing depending on the existence of apical oxygen in the T'-structure. Based on the XANES analyses, it is revealed that the change of oxidation state is influenced by the presence of both electron and hole carriers in the two-carrier model of T’-structure.

Info:

Periodical:

Edited by:

Prof. Kazuo Umemura

Pages:

93-97

Citation:

I. Resky et al., "Oxygen Reduction Effect on T’-Pr2-xCexCuO4 Nanopowders in the Underdoped Regime Studied by X-Ray Absorption near Edge Structure", Materials Science Forum, Vol. 936, pp. 93-97, 2018

Online since:

October 2018

Export:

Price:

$41.00

* - Corresponding Author

[1] G.H. Kwei, S.W. Cheong, Z. Fisk, F.H. Garzon, J.A. Goldstone, J.D. Thompson, Physical Review B, 40 (1989) 9370-9373.

[2] E. Takayama-Muromachi, F. Izumi, Y. Uchida, K. Kato, H. Asano, Physica C: Superconductivity, 159 (1989) 634-638.

DOI: https://doi.org/10.1016/0921-4534(89)91296-3

[3] O. Matsumoto, A. Utsuki, A. Tsukada, H. Yamamoto, T. Manabe, M. Naito, Physica C: Superconductivity, 469 (2009) 924-927.

DOI: https://doi.org/10.1016/j.physc.2009.05.100

[4] P. Fournier, Physica C: Superconductivity and its Applications, 514 (2015) 314-338.

[5] M. Naito, M. Hepp, Physica C: Superconductivity, 357-360 (2001) 333-336.

[6] Y. Krockenberger, H. Irie, O. Matsumoto, K. Yamagami, M. Mitsuhashi, A. Tsukada, M. Naito, H. Yamamoto, Scientific Reports, 3 (2013) 2235.

DOI: https://doi.org/10.1038/srep02235

[7] T. Adachi, A. Takahashi, K.M. Suzuki, M.A. Baqiya, T. Konno, T. Takamatsu, M. Kato, I. Watanabe, A. Koda, M. Miyazaki, R. Kadono, Y. Koike, Journal of the Physical Society of Japan, 85 (2016) 114716.

DOI: https://doi.org/10.7566/jpsj.85.114716

[8] M.A. Baqiya, B. Triono, Darminto, T. Adachi, A. Takahashi, T. Konno, M. Watanabe, T. Prombood, Y. Koike, IOP Conference Series: Materials Science and Engineering, 196 (2017) 012011.

DOI: https://doi.org/10.1088/1757-899x/196/1/012011

[9] J.M. Tranquada, S.M. Heald, A.R. Moodenbaugh, G. Liang, M. Croft, Nature, 340 (1989) 349.

[10] Y.Y. Hsu, B.N. Lin, J.F. Lee, L.Y. Jang, H.C. Ku, Journal of Low Temperature Physics, 131 (2003) 343-347.

[11] M.A. Baqiya, H. Widodo, L. Rochmawati, Darminto, T. Adachi, Y. Koike, AIP Conference Proceedings, 1454 (2012) 260-263.

[12] H. Rietveld, Journal of Applied Crystallography, 2 (1969) 65-71.

[13] L. Lutterotti, P. Scardi, Journal of Applied Crystallography, 23 (1990) 246-252.

[14] A.J. Schultz, J.D. Jorgensen, J.L. Peng, R.L. Greene, Physical Review B, 53 (1996) 5157-5159.

[15] B. Ravel, M. Newville, Journal of synchrotron radiation, 12 (2005) 537-541.

[16] J.M. Tranquada, S.M. Heald, A.R. Moodenbaugh, Physical Review B, 36 (1987) 5263-5274.

[17] T. Adachi, T. Kawamata, Y. Koike, Condensed Matter, 2 (2017) 23.

[18] P. Li, R.L. Greene, Physical Review B, 76 (2007) 174512.

[19] P.R. Mandal, T. Sarkar, J.S. Higgins, R.L. Greene, Physical Review B, 97 (2018) 014522.

[20] G. Liang, Q. Yao, S. Zhou, D. Katz, Physica C: Superconductivity and its Applications, 424 (2005) 107-115.