Acoustic Tomography of Composite Materials of the Through-Transition Method

Article Preview

Abstract:

The article presents the image of the testing area for the through-transition method with an acoustic array. Using linear acoustic array in through-transition method, a set of data from different angles is obtained. Using this data set and the back projection method, the test area imaging is obtained, which is represented by a set of small local areas. The number of initial projections passing through each local area is calculated. Furthermore, the density function is determined and the resulting function, that is encoded whether in color or grayscale, is displayed on the monitor screen.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

75-80

Citation:

Online since:

October 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.A. Smith, D.A. Bruce, L.D. Jones, A.B. Marriott, L.P. Scudder and S.J. Willsher, Ultrasonic C-scan standardization for polymer-matrix composites - acoustic considerations, Review of Progress in Quantitative Nondestructive Evaluation 17 (1998).

DOI: 10.1007/978-1-4615-5339-7_264

Google Scholar

[2] J.Ellis and S.Petruc, Through-Transmission UT: An Alternative for Crack Inspection, SPRING, 2008, pp.23-26.

Google Scholar

[3] Bray, Don E. and Don McBride, Nondestructive Testing Techniques, Chapter 11.

Google Scholar

[4] Ultrasonic Testing of Aerospace Materials, John Wiley and Sons, New York, (1992).

Google Scholar

[5] R. Raišutis, A. Voleišis, R. Kažys, Application of the through transmission ultrasonic technique for estimation of the phase velocity dispersion in plastic materials, Ultragarsas (Ultrasound), 63 (2008) 15-18.

Google Scholar

[6] J. Krautkremer, G. Krautkremer, Ultrasonic Control of Materials. Metallurgy, Мoscow, (1991).

Google Scholar

[7] M. Bech, X-ray imaging with a grating interferometer, J. of Synchrotron Radiation 6 (2009) 1-116.

Google Scholar

[8] A.V. Bronnikov, Theory of quantitative phase-contrast computed tomography, J. of the Opt. Soc. of America 19 (2002) 472-480.

DOI: 10.1364/josaa.19.000472

Google Scholar

[9] T. Davis, D. Gao, T.Gureyev, A. Stevenson, S. Wilkins, Phase contrast imaging of weakly absorbing materials using hard x-rays, Nature 373 (1995) 595-598.

DOI: 10.1038/373595a0

Google Scholar

[10] S. Schaller, T.Flohr, and P.Steffen, An efficient Fourier method for Radon inversion in exact cone-beam CT reconstruction, IEEE Trans. On Med. Imaging 17(2) (1998) 244-250.

DOI: 10.1109/42.700736

Google Scholar

[11] D.Potts and al., Fast Fourier transforms for nonequispaced data: a tutorial in modern sampling theory: mathematics and applications, J.J Benedetto and P.J.S.G. Ferreira (Eds.), Applied and Numerical Harmonic Analysis Series. Burkhauser, Boston, 2001, pp.249-274.

DOI: 10.1007/978-1-4612-0143-4_12

Google Scholar

[12] F. Wubbeling and N.Frank, Mathematical Methods in Image Reconstruction. Philadelphia, PA: Society for Industrial and Applied Mathematics. (2001).

Google Scholar

[13] S.R. Deans, The Radon Transform and Some of Its Applications, Wiley, (1983).

Google Scholar

[14] C. Schmid, Constructing models for content-based image retrieval. In CVPR, (2001).

Google Scholar

[15] A.C. Kak, Malcolm Slaney. Principles of Computerized Tomographic Imaging. Engineering, 33.1 (1988) 327.

Google Scholar

[16] Wojciech Chlewicki. 3D Simultaneous Algebraic Reconstruction Technique for Cone-Beam Projections: Master of Science Thesis, UNIVERSITY OF PATRAS, (2001).

Google Scholar

[17] H. Guan, R. Gordon, Computed tomography using algebraic reconstruction techniques (ARTs) with different projection access schemes: a comparison study under practical situations, Physics in Medicine and Biology, 9 (1996) 1727-1743.

DOI: 10.1088/0031-9155/41/9/012

Google Scholar

[18] Herman, Gabor T, Fundamentals of Computerized Tomography: Image Reconstruction from Projections 2nd, Springer Publishing Company, Incorporated, (2009).

Google Scholar

[19] M. Radermacher, Weighted Back-Projection Methods, 2006, DOI 10.1007/978-1-4757-2163-8-5.

Google Scholar

[20] F.C. Peyrin, The generalized back projection theorem for cone beam reconstruction, IEEE Trans. Nucl. Sci., NS-32:4 (1985).

DOI: 10.1109/tns.1985.4333644

Google Scholar

[21] Samuel Matej, Jeffrey A. Fessler and Ivan G. Kazantsev, Fourier-Based Forward and Back-Projectors for Iterative Image Reconstruction, UNIVERSITY OF PENNSYLVANIA, MIPG AND UNIVERSITY OF MICHIGAN, EECS – TECHNICAL REPORT, (2003).

DOI: 10.1109/nssmic.2002.1239651

Google Scholar

[22] Lu, Tongxin, «Tomographic reconstruction algorithms using optoelectronic devices», Retrospective Theses and Dissertations, (1992), 10330.

Google Scholar

[23] K.G. Kvasnikov, A.I. Soldatov, I.O. Bolotina, K.M. Krening, A.A. Potapenko, The use of geometrical acoustics for the solution of visualization problems, R. J. of NDT, 49(11) (2013) 625-630.

DOI: 10.1134/s1061830913110065

Google Scholar

[24] Stephen Siklos, Advanced Problems in Mathematics: Preparing for University, Open Book Publishers, (2016).

Google Scholar

[25] E. Magrab, An Engineer's Guide to Mathematica, John Wiley & Sons, (2014).

Google Scholar

[26] A. Soldatov, A. Soldatov, M. Kostina, P. Bakanov, M. Polonskaya, Small-angle tomography algorithm for transmission inspection of acoustic linear array, MATEC Web of Conf. 48,03006 (2016).

DOI: 10.1051/matecconf/20164803006

Google Scholar

[27] P.V. Sorokin, A.A. Soldatov, M.A. Soldatova, U.V. Shulgina, A.A. Abouellail, Influence of the echo shapes on the result of tomographic image, SIBCON (2015).

DOI: 10.1109/sibcon.2015.7147305

Google Scholar

[28] A. Soldatov, V. Makarov, P. Sorokin, K. Kvasnikov, A. Soldatov, A. Selesnev, M. Kroening, Dynamic imaging acoustic fields in research practice, IFOST (2012).

DOI: 10.1109/ifost.2012.6357734

Google Scholar