[1]
C. Liu, S.D. Bhole, Challenges and developments in pipeline weldability and mechanical properties, Science and Technology of Welding and Joining 18(2) (2013) 169-181.
DOI: 10.1179/1362171812y.0000000090
Google Scholar
[2]
S.K. Sharma, S. Maheshwari, A review on welding of high strength oil and gas pipeline steels, Journal of Natural Gas Science and Engineering 38 (2017) 203-217.
DOI: 10.1016/j.jngse.2016.12.039
Google Scholar
[3]
D. Nolan, D. Dunne, J. Norrish, Root pass solidification cracking in low carbon pipeline girth welds deposited via cellulosic manual metal arc welding, Science and Technology of Welding and Joining 8(2) (2003) 102-112.
Google Scholar
[4]
N. Coniglio, V. Linton, E. Gamboa, Coating composition, weld parameter and consumable conditioning effects on weld metal composition in shielded metal arc welding, Science and Technology of Welding and Joining 15(5) (2010) 361-368.
DOI: 10.1179/136217110x12731414739952
Google Scholar
[5]
J.E. Ramirez, M. Johnson, Effect of welding parameters and electrode condition on alloying enrichment of weld metal deposited with coated cellulosic electrodes, Welding Journal 89(11) (2010) 232-s-242-s.
Google Scholar
[6]
S. Sarafan, F.M. Alek Ghaini, E. Rahimi Effects of welding direction and position on susceptibility to weld metal transverse cracking in welding high-strength pipeline steel with cellulosic electrodes, Welding Journal 91(6) (2012) 182-s-185-s.
Google Scholar
[7]
T. Zhang, Z. Li, S. Ma, S. Kou, H. Jing, High strength steel (600-900 MPa) deposited metals: microstructure and mechanical properties, Science and Technology of Welding and Joining 21(3) (2016) 186-193.
DOI: 10.1179/1362171815y.0000000079
Google Scholar
[8]
P.J. Blakeley, J. Simkin Magnetism in the welding of pipelines, Welding and Metal Fabrication 60(10) (1992) 475-477.
Google Scholar
[9]
P.M. Korol'kov, Mechanism of formation and methods of preventing magnetic blow in welding, Welding International 12(11) (1998) 894-896.
DOI: 10.1080/09507119809455141
Google Scholar
[10]
J.H.E. Hernandez, F. Caleyo, G.L.R. Morales, J.M. Hallen, A.L. Montenegro, E.P. Baruch, Method provides welders new technique for avoiding arc blow, Oil and Gas Journal 107(47) (2009) 54-59.
Google Scholar
[11]
J.H. Espina-Hernández, F. Caleyo, J.M. Hallen, G.L. Rueda-Morales, E. Pérez-Baruch, A. López-Montenegro, Method to reduce arc blow during DC arc welding of pipelines, Proceedings of the Biennial International Pipeline Conference, 3 (2010).
DOI: 10.1115/ipc2010-31393
Google Scholar
[12]
J. Cui, W. Huang, A. Yang, Z. Zhang, X. Ma, Reasons for the occurrence of magnetic field on pipeline craters and the relavant demagnetization methods, Natural Gas Industry 31(7) (2011) 74-76.
Google Scholar
[13]
T. Benjaboonyazit, Systematic approach to problem solving of low quality arc welding during pipeline maintenance using ARIZ (algorithm of inventive problem solving), Engineering Journal, 18(4) (2014) 113-133.
DOI: 10.4186/ej.2014.18.4.113
Google Scholar
[14]
D.J. Kotecki, P.A. Tews, Arc blow simulator, Welding Journal, 55(4) (1976) 108-s-112-s.
Google Scholar
[15]
E. Halmoy, Remanent magnetism – a cause of arc blow, Indian Welding Journal, 15(1) (1983) 9-15.
DOI: 10.22486/iwj.v15i1.148487
Google Scholar
[16]
I. Watanabe, M. Suzuki, T. Kojima, O. Hirano, Prevention against the magnetic arc blow in DC arc welding of pipes, Journal of the Japan Welding Society, 52(2) (1983) 185-192.
Google Scholar
[17]
E.W.L. Norman, Magnetic arc blow. Part 1. The origin of magnetic fields, Metal construction, 16(7) (1984) 441-445.
Google Scholar
[18]
E.W.L. Norman, Magnetic arc blow. Part 2. Effects and solutions, Metal construction, 16(8) (1984) 496-500.
Google Scholar
[19]
P.J. Blakeley, Magnetic arc blow – causes, effects and cures, Metal construction, 20(2) (1988) 58-61.
Google Scholar
[20]
E. Hanova, Magnetic arc blow, Welding International, 5(12) (1991) 995-999.
DOI: 10.1080/09507119109446834
Google Scholar
[21]
P.J. Blakeley, Magnetic arc blow. Causes and remedies, Welding and Metal Fabrication, 59(7) (1991) 401-404.
Google Scholar
[22]
P.J. Blakeley, J. Simkin, Magnetism in the welding of pipelines, Welding and Metal Fabrication, 60(10) (1992) 475-477.
Google Scholar
[23]
J.R. Brian, New system to control magnetic arc blow in welding, Journal of Ship Production, 11(1) (1995) 30-33.
Google Scholar
[24]
D. Schaffer, Attacking arc blow, Welding Journal, 78(4) (1999) 47.
Google Scholar
[25]
R.P. Reis, D. Souza, A. Scotti, Models to describe plasma jet, arc trajectory and arc blow formation in arc welding, Welding in the World, 55(3-4) (2011) 24-32.
DOI: 10.1007/bf03321283
Google Scholar
[26]
Y. Yamaguchi, Y. Katada, T. Itou, Y. Uesugi, Y. Tanaka, T. Ishijima, Experimental investigation of magnetic arc blow in plasma arc cutting, Welding in the World, 59(1) (2014) 45-51.
DOI: 10.1007/s40194-014-0177-0
Google Scholar
[27]
Information on http://www.lincolnelectric.com/en-sg/support/welding-how-to/Pages/ preventing-arc-blow-detail.aspx.
Google Scholar
[28]
V.V. Frolov (Eds.) Theory of the welding processes, High School Publishing, Moscow, 1988. (in Russian).
Google Scholar
[29]
R. John, D.J. Ellis, AC or DC for manual metal arc. The trend towards solid state controlled DC power sources, Metal construction, 14(7) (1982) 368-371.
Google Scholar
[30]
L.O. Vilarinho, A.S. Nascimento, D.B. Fernandes, C.A.M. Mota Methodology for parameter calculation of VP-GMAW, Welding Journal, 88(4) (2009) 92-s-98-s.
Google Scholar
[31]
J.L. Pan, Arc welding control, Woodhead Publishing Limited and CRC Press LLC, Cambridge, (2003).
Google Scholar
[32]
E. Schofer, G. Martin A complete and reliable partner for pipe mils, Svetsaren, 63(1) (2008) 26-31.
Google Scholar