[1]
Yibin Ma, Ning Li, Deyu Li, Milin Zhang, Xiaomei Huang, Characteristics and corrosion studies of vanadate conversion coating formed on Mg–14 wt%Li–1 wt%Al–0.1 wt%Ce alloy, Appl. Surf. Sci. 261 (2012) 59.
DOI: 10.1016/j.apsusc.2012.07.069
Google Scholar
[2]
Shaylin Shadanbaz, George J. Dias, Calcium phosphate coatings on magnesium alloys for biomedical applications: A review, Acta Biomater. 8 (2012) 20-30.
DOI: 10.1016/j.actbio.2011.10.016
Google Scholar
[3]
Liyuan Niu, Shiuan-Ho Chang, Xian Tong, Guangyu Li, Zimu Shi, Analysis of characteristics of vanadate conversion coating on the surface of magnesium alloy, J. Alloys Compd. 617 (2014) 214-218.
DOI: 10.1016/j.jallcom.2014.08.044
Google Scholar
[4]
Liyuan Niu, Shiuan-Ho Chang, Yichang Su, Dong Han, Guangyu Li, A aluminum coating with chromium-free passivating film formed on AZ91D magnesium alloy, J. Alloys Compd. 635 (2015) 11–15.
DOI: 10.1016/j.jallcom.2015.02.107
Google Scholar
[5]
Shiuan-Ho Chang, Liyuan Niu, Yichang Su, Wenquan Wang, Xian Tong, Guangyu Li, Effect of the pretreatment of silicone penetrant on the performance of the chromium-free chemfilm coated on AZ91D magnesium alloys, Mater. Chem. Phys. 171 (2016).
DOI: 10.1016/j.matchemphys.2016.01.022
Google Scholar
[6]
Frank Witte, Norbert Hort, Carla Vogt, Smadar Cohen, Karl Ulrich Kainer, Regine Willumeit, Frank Feyerabend, Degradable biomaterials based on magnesium corrosion, Curr. Opin. Solid. St. M., 12 (2008) 63-72.
DOI: 10.1016/j.cossms.2009.04.001
Google Scholar
[7]
Y. Xin, T. Hu, P.K. Chu, In vitro studies of biomedical magnesium alloys in a simulated physiological environment: A review, Acta Biomater. 7 (2011) 1452-1459.
DOI: 10.1016/j.actbio.2010.12.004
Google Scholar
[8]
Y.F. Zheng, X.N. Gu, F. Witte, Biodegradable metals, Mat. Sci. Eng. R 77 (2014) 1-34.
Google Scholar
[9]
Z.J. Jia,M. Li, Q. Liu, X.C. Xu, Y. Cheng, Y.F. Zheng, T.F. Xi, S.C. Wei, Micro-arc oxidation of a novel Mg–1Ca alloy in three alkaline KF electrolytes: corrosion resistance and cytotoxicity, Appl. Surf. Sci. 292 (2014) 1030–1039.
DOI: 10.1016/j.apsusc.2013.11.038
Google Scholar
[10]
Y. Zhao, M.I. Jamesh W.K. Li, G.S.Wu, C.X. Wang, Y.F. Zheng, K.W.K. Yeung, P.K. Chu, Enhanced antimicrobial properties, cytocompatibility, and corrosion resistance of plasma-modified biodegradable magnesium alloys, Acta Biomater. 10 (2014).
DOI: 10.1016/j.actbio.2013.10.012
Google Scholar
[11]
Junko Hieda, Mitsuo Niinomi, Masaaki Nakai, Ken Cho, In vitro biocompatibility of Ti–Mg alloys fabricated by direct current magnetron sputtering, Mat. Sci. Eng. C 54 1 (2015) 1–7.
DOI: 10.1016/j.msec.2015.04.029
Google Scholar
[12]
Erlin Zhang, Lei Yang, Microstructure, mechanical properties and bio-corrosion properties of Mg–Zn–Mn–Ca alloy for biomedical application, Mater. Sci. Eng. A 497 (2008) 111–118.
DOI: 10.1016/j.msea.2008.06.019
Google Scholar
[13]
Yongsheng Wang, Ming Jen Tan, Anders W. E. Jarfors, Corrosion performance of melt-spun Mg67Zn28Ca5 metallic glass in artificial sweat, J. Mater. Sci. 47 (2012) 6586-6592.
DOI: 10.1007/s10853-012-6589-6
Google Scholar
[14]
Feng-Xiang Qin, Chuan Ji, Zhen-Hua Dan et al., Corrosion Behavior of MgZnCa Bulk Amorphous Alloys Fabricated by Spark Plasma Sintering, Acta Metall. Sin-Engl., 29 (2016) 793-799.
DOI: 10.1007/s40195-016-0451-9
Google Scholar
[15]
Roman A. Surmenev, Maria A. Surmeneva, Anna A. Ivanova, Significance of calcium phosphate coatings for the enhancement of new bone osteogenesis – A review, Acta Biomater. 10 (2014) 557-579.
DOI: 10.1016/j.actbio.2013.10.036
Google Scholar
[16]
A. Drynda, T. Hassel, R. Hoehn, A. Perz, F.W. Bach, M. Peuster, Development and biocompatibility of a novel corrodible fluoride-coated magnesium–calcium alloy with improved degradation kinetics and adequate mechanical properties for cardiovascular applications, J. Biomed. Mater. Res. A 93 (2010).
DOI: 10.1002/jbm.a.32582
Google Scholar
[17]
B.P. Zhang, Y.L. Hou, X.D. Wang, Y. Wang, L. Geng, Mechanical properties, degradation performance and cytotoxicity of Mg–Zn–Ca biomedical alloys with different compositions, Mater. Sci. Eng. C 31 (2011) 1667–1673.
DOI: 10.1016/j.msec.2011.07.015
Google Scholar
[18]
Yingchao Su, Guangyu Li, Jianshe Lian, A Chemical Conversion Hydroxyapatite Coating on AZ60 Magnesium Alloy and Its Electrochemical Corrosion Behaviour, Int. J. Electrochem. Sci. 7 (2012) 11497 – 11511.
Google Scholar
[19]
W.H. Chang, B. Qu, A.D. Liao, S.F. Zhang, R.F. Zhang, J.H. Xiang, In vitro biocompatibility and antibacterial behavior of anodic coatings fabricated in an organic phosphate containing solution on Mg–1.0Ca alloys, Surf. Coat. Tech. 289 (2016).
DOI: 10.1016/j.surfcoat.2016.01.052
Google Scholar
[20]
Yen-Ting Liu, Kuan-Chen Kung, Tzer-Min Lee, Truan-Sheng Lui, Enhancing biological properties of porous coatings through the incorporation of manganese, J. Alloys Compd. 581 (2013) 459–467.
DOI: 10.1016/j.jallcom.2013.07.106
Google Scholar
[21]
Yingchao Su, Liyuan Niu, Yanbo Lu, Jianshe Lian, and Guangyu Li, Preparation and Corrosion Behavior of Calcium Phosphate and Hydroxyapatite Conversion Coatings on AM60 Magnesium Alloy, J. Electrochem. Soc. 160 (2013) C536-C541.
DOI: 10.1149/2.036311jes
Google Scholar
[22]
M Anik, G Celikten, Analysis of the electrochemical reaction behavior of alloy AZ91 by EIS technique in H3PO4/KOH buffered K2SO4 solutions. Corros. Sci., 49 (2007) 1878-1894.
DOI: 10.1016/j.corsci.2006.10.016
Google Scholar
[23]
YC Yang, CY Tsai, YH Huang, CS Lin, Formation Mechanism and Properties of Titanate Conversion Coating on AZ31 Magnesium Alloy. J. Electrochem. Soc. 159 (2012) C226-C232.
DOI: 10.1149/2.091205jes
Google Scholar