Investigation on the Anticorrosion Property of the MnCaP Coating on a Mg-Zn-Ca Alloy

Article Preview

Abstract:

In order to improve the anticorrosion ability of a Mg-5Zn-1.5Ca alloy used as a bone replacement material, this study prepared the MnCaP conversion coating, which was formed from a phosphating solution mixed with a MnCl2 solution of 0.05 molarity, on a magnesium (Mg) alloy. After forming a MnCaP conversion coating on a Mg alloy, micro-arc oxidation (MAO) proceeded for improving the anticorrosion ability of the sample. As a result, when the 0.05MnCaP coating on a Mg alloy was immersed in the simulated body fluid (SBF), the corrosion current, pH value change, and hydrogen evolution volume of the SBF solution are lower than a uncoated Mg alloy. From the SEM and EDS analyses for a corroded 0.05MnCaP coating on a Mg alloy, the manganese (Mn) phosphate in a lumpy-rock form and the calcium (Ca) phosphate in a flake form alternate to each other densely, so that the coating can effectively prevent a Mg alloy from corrosion.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

83-88

Citation:

Online since:

November 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Yibin Ma, Ning Li, Deyu Li, Milin Zhang, Xiaomei Huang, Characteristics and corrosion studies of vanadate conversion coating formed on Mg–14 wt%Li–1 wt%Al–0.1 wt%Ce alloy, Appl. Surf. Sci. 261 (2012) 59.

DOI: 10.1016/j.apsusc.2012.07.069

Google Scholar

[2] Shaylin Shadanbaz, George J. Dias, Calcium phosphate coatings on magnesium alloys for biomedical applications: A review, Acta Biomater. 8 (2012) 20-30.

DOI: 10.1016/j.actbio.2011.10.016

Google Scholar

[3] Liyuan Niu, Shiuan-Ho Chang, Xian Tong, Guangyu Li, Zimu Shi, Analysis of characteristics of vanadate conversion coating on the surface of magnesium alloy, J. Alloys Compd. 617 (2014) 214-218.

DOI: 10.1016/j.jallcom.2014.08.044

Google Scholar

[4] Liyuan Niu, Shiuan-Ho Chang, Yichang Su, Dong Han, Guangyu Li, A aluminum coating with chromium-free passivating film formed on AZ91D magnesium alloy, J. Alloys Compd. 635 (2015) 11–15.

DOI: 10.1016/j.jallcom.2015.02.107

Google Scholar

[5] Shiuan-Ho Chang, Liyuan Niu, Yichang Su, Wenquan Wang, Xian Tong, Guangyu Li, Effect of the pretreatment of silicone penetrant on the performance of the chromium-free chemfilm coated on AZ91D magnesium alloys, Mater. Chem. Phys. 171 (2016).

DOI: 10.1016/j.matchemphys.2016.01.022

Google Scholar

[6] Frank Witte, Norbert Hort, Carla Vogt, Smadar Cohen, Karl Ulrich Kainer, Regine Willumeit, Frank Feyerabend, Degradable biomaterials based on magnesium corrosion, Curr. Opin. Solid. St. M., 12 (2008) 63-72.

DOI: 10.1016/j.cossms.2009.04.001

Google Scholar

[7] Y. Xin, T. Hu, P.K. Chu, In vitro studies of biomedical magnesium alloys in a simulated physiological environment: A review, Acta Biomater. 7 (2011) 1452-1459.

DOI: 10.1016/j.actbio.2010.12.004

Google Scholar

[8] Y.F. Zheng, X.N. Gu, F. Witte, Biodegradable metals, Mat. Sci. Eng. R 77 (2014) 1-34.

Google Scholar

[9] Z.J. Jia,M. Li, Q. Liu, X.C. Xu, Y. Cheng, Y.F. Zheng, T.F. Xi, S.C. Wei, Micro-arc oxidation of a novel Mg–1Ca alloy in three alkaline KF electrolytes: corrosion resistance and cytotoxicity, Appl. Surf. Sci. 292 (2014) 1030–1039.

DOI: 10.1016/j.apsusc.2013.11.038

Google Scholar

[10] Y. Zhao, M.I. Jamesh W.K. Li, G.S.Wu, C.X. Wang, Y.F. Zheng, K.W.K. Yeung, P.K. Chu, Enhanced antimicrobial properties, cytocompatibility, and corrosion resistance of plasma-modified biodegradable magnesium alloys, Acta Biomater. 10 (2014).

DOI: 10.1016/j.actbio.2013.10.012

Google Scholar

[11] Junko Hieda, Mitsuo Niinomi, Masaaki Nakai, Ken Cho, In vitro biocompatibility of Ti–Mg alloys fabricated by direct current magnetron sputtering, Mat. Sci. Eng. C 54 1 (2015) 1–7.

DOI: 10.1016/j.msec.2015.04.029

Google Scholar

[12] Erlin Zhang, Lei Yang, Microstructure, mechanical properties and bio-corrosion properties of Mg–Zn–Mn–Ca alloy for biomedical application, Mater. Sci. Eng. A 497 (2008) 111–118.

DOI: 10.1016/j.msea.2008.06.019

Google Scholar

[13] Yongsheng Wang, Ming Jen Tan, Anders W. E. Jarfors, Corrosion performance of melt-spun Mg67Zn28Ca5 metallic glass in artificial sweat, J. Mater. Sci. 47 (2012) 6586-6592.

DOI: 10.1007/s10853-012-6589-6

Google Scholar

[14] Feng-Xiang Qin, Chuan Ji, Zhen-Hua Dan et al., Corrosion Behavior of MgZnCa Bulk Amorphous Alloys Fabricated by Spark Plasma Sintering, Acta Metall. Sin-Engl., 29 (2016) 793-799.

DOI: 10.1007/s40195-016-0451-9

Google Scholar

[15] Roman A. Surmenev, Maria A. Surmeneva, Anna A. Ivanova, Significance of calcium phosphate coatings for the enhancement of new bone osteogenesis – A review, Acta Biomater. 10 (2014) 557-579.

DOI: 10.1016/j.actbio.2013.10.036

Google Scholar

[16] A. Drynda, T. Hassel, R. Hoehn, A. Perz, F.W. Bach, M. Peuster, Development and biocompatibility of a novel corrodible fluoride-coated magnesium–calcium alloy with improved degradation kinetics and adequate mechanical properties for cardiovascular applications, J. Biomed. Mater. Res. A 93 (2010).

DOI: 10.1002/jbm.a.32582

Google Scholar

[17] B.P. Zhang, Y.L. Hou, X.D. Wang, Y. Wang, L. Geng, Mechanical properties, degradation performance and cytotoxicity of Mg–Zn–Ca biomedical alloys with different compositions, Mater. Sci. Eng. C 31 (2011) 1667–1673.

DOI: 10.1016/j.msec.2011.07.015

Google Scholar

[18] Yingchao Su, Guangyu Li, Jianshe Lian, A Chemical Conversion Hydroxyapatite Coating on AZ60 Magnesium Alloy and Its Electrochemical Corrosion Behaviour, Int. J. Electrochem. Sci. 7 (2012) 11497 – 11511.

Google Scholar

[19] W.H. Chang, B. Qu, A.D. Liao, S.F. Zhang, R.F. Zhang, J.H. Xiang, In vitro biocompatibility and antibacterial behavior of anodic coatings fabricated in an organic phosphate containing solution on Mg–1.0Ca alloys, Surf. Coat. Tech. 289 (2016).

DOI: 10.1016/j.surfcoat.2016.01.052

Google Scholar

[20] Yen-Ting Liu, Kuan-Chen Kung, Tzer-Min Lee, Truan-Sheng Lui, Enhancing biological properties of porous coatings through the incorporation of manganese, J. Alloys Compd. 581 (2013) 459–467.

DOI: 10.1016/j.jallcom.2013.07.106

Google Scholar

[21] Yingchao Su, Liyuan Niu, Yanbo Lu, Jianshe Lian, and Guangyu Li, Preparation and Corrosion Behavior of Calcium Phosphate and Hydroxyapatite Conversion Coatings on AM60 Magnesium Alloy, J. Electrochem. Soc. 160 (2013) C536-C541.

DOI: 10.1149/2.036311jes

Google Scholar

[22] M Anik, G Celikten, Analysis of the electrochemical reaction behavior of alloy AZ91 by EIS technique in H3PO4/KOH buffered K2SO4 solutions. Corros. Sci., 49 (2007) 1878-1894.

DOI: 10.1016/j.corsci.2006.10.016

Google Scholar

[23] YC Yang, CY Tsai, YH Huang, CS Lin, Formation Mechanism and Properties of Titanate Conversion Coating on AZ31 Magnesium Alloy. J. Electrochem. Soc. 159 (2012) C226-C232.

DOI: 10.1149/2.091205jes

Google Scholar