Effects of Heat Treatment on Unique Layered Microstructure and Tensile Properties of TiAl Fabricated by Electron Beam Melting

Article Preview

Abstract:

In the present study, effects of heat treatment on microstructures and tensile properties of the cylindrical bars of Ti-48Al-2Cr-2Nb (at.%) alloy with unique layered microstructure consisting of equiaxed γ grains region (γ band) and duplex-like region fabricated by electron beam melting (EBM) were investigated. We found that it is possible to control width of the γ bands (Wγ) by heat treatments at 1100°C and 1190°C. The Wγ increases with decreasing heat treatment temperature. The bars heat-treated at 1190°C exhibit high elongation of 2.9% at room temperature (RT) with maintaining high strength. The RT elongation increases with increasing the Wγ because of increasing deformable regions. In contrast, the RT elongation of the bars decreases with increasing the Wγ when Wγ is very large. This is because the large γ band leads intergranular fracture. These results indicate that there is appropriate width for the γ band to obtain excellent tensile properties at RT.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1366-1371

Citation:

Online since:

December 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. M. Dimiduk, D. B. Miracle, Y.-W. Kim, M. G. Mendiratta, Recent Progress on Intermetallic Alloys for Advanced Aerospace System, ISIJ International, 31 (1991) 1223-1234.

DOI: 10.2355/isijinternational.31.1223

Google Scholar

[2] Y.-W. Kim, Ordered intermetallic alloys, Part III: Gamma titanium aluminides, JOM, 46 (1994) 30-39.

DOI: 10.1007/bf03220745

Google Scholar

[3] H. Clemens, S. Mayer, Intermetallic titanium aluminides in aerospace applications– processing, microstructure and properties, Materials at High Temperatures, 33 (2016) 560-570.

DOI: 10.1080/09603409.2016.1163792

Google Scholar

[4] J. P. Kuang, R. A. Harding, J. Campbell, Microstructures and properties of investment castings of γ-titanium aluminide, Materials Science and Engineering: A, 329-331 (2002) 31-37.

DOI: 10.1016/s0921-5093(01)01539-8

Google Scholar

[5] S. L. Sing, J. An, W. Y. Yeong: Laser and electron-beam powder-bed additive manufacturing of metallic implants: A review on process, materials and designs, Journal of Orthopaedic Research, 34 (2016) 369-385.

DOI: 10.1002/jor.23075

Google Scholar

[6] C. Kӧrner, Additive manufacturing of metallic components by selective electron beam melting –a review, International Material Reviews, 61 (2016) 361-377.

DOI: 10.1080/09506608.2016.1176289

Google Scholar

[7] M. Filippini, S. Beretta, L. Patriarca, G. Pasquero, S. Sabbadini, Defect tolerance of a gamma aluminide alloy, Procedia Engineering, 10 (2011) 3677-3682.

DOI: 10.1016/j.proeng.2011.04.605

Google Scholar

[8] M. Seifi, A. A. Salem, D. P. Satko, U. Ackelid, S. L. Semiatin, J. J. Lewandowski, Journal of Alloys and Compounds, 729 (2017) 1118-1135.

DOI: 10.1016/j.jallcom.2017.09.163

Google Scholar

[9] S. Biamino, A. Penna, U. Ackelid, S. Sabbadini, O. Tassa, P. Fino, M. Pavese, P. Gennaro, C. Badini, Electron beam melting of Ti-48Al-2Cr-2Nb alloy: Microstructure and mechanical properties investigation, Intermetallics, 19 (2011) 776-781.

DOI: 10.1016/j.intermet.2010.11.017

Google Scholar

[10] J. Schwerdtfeger and C. Kӧrner, Selective electron beam melting of Ti-48Al-2Nb-2Cr: Microstructure and aluminium loss, Intermetallics, 49 (2014) 29-35.

DOI: 10.1016/j.intermet.2014.01.004

Google Scholar

[11] M. Todai, T. Nakano, T. Liu, H. Y. Yasuda, K. Hagihara, K. Cho, M. Ueda, M. Takeyama, Effect of building direction on the microstructure and tensile properties of Ti-48Al-2Cr-2Nb alloy additively manufactured by electron beam melting, Additive Manufacturing, 13 (2017) 61-70.

DOI: 10.1016/j.addma.2016.11.001

Google Scholar

[12] K. Cho, R. Kobayashi, J. Y. Oh, H. Y. Yasuda, M. Todai, T. Nakano, A. Ikeda, M. Ueda, M. Takeyama, Influence of unique layered microstructure on fatigue properties of Ti-48Al- 2Cr-2Nb alloys fabricated by electron beam melting, Intermetallics, 95 (2018) 1-10.

DOI: 10.1016/j.intermet.2018.01.009

Google Scholar

[13] M. Jouiad, A. L. Gloanec, M. Grange, G. Henaff, Cyclic deformation mechanisms in a cast gamma titanium aluminide alloy, Materials Science and Engineering: A, 400–401 (2005) 409–412.

DOI: 10.1016/j.msea.2005.01.073

Google Scholar

[14] K. Cho, R. Kobayashi, H. Y. Yasuda, M. Todai, T. Nakano, A. Ikeda, D. Kondo, Y. Nagamachi, M. Ueda, M. Takeyama, Microstructures and Mechanical Properties of TiAl Alloys Fabricated by Electron Beam Melting, MS&T2017 (2017), Pittsburgh, PA.

DOI: 10.4028/www.scientific.net/msf.941.1597

Google Scholar