[1]
D. M. Dimiduk, D. B. Miracle, Y.-W. Kim, M. G. Mendiratta, Recent Progress on Intermetallic Alloys for Advanced Aerospace System, ISIJ International, 31 (1991) 1223-1234.
DOI: 10.2355/isijinternational.31.1223
Google Scholar
[2]
Y.-W. Kim, Ordered intermetallic alloys, Part III: Gamma titanium aluminides, JOM, 46 (1994) 30-39.
DOI: 10.1007/bf03220745
Google Scholar
[3]
H. Clemens, S. Mayer, Intermetallic titanium aluminides in aerospace applications– processing, microstructure and properties, Materials at High Temperatures, 33 (2016) 560-570.
DOI: 10.1080/09603409.2016.1163792
Google Scholar
[4]
J. P. Kuang, R. A. Harding, J. Campbell, Microstructures and properties of investment castings of γ-titanium aluminide, Materials Science and Engineering: A, 329-331 (2002) 31-37.
DOI: 10.1016/s0921-5093(01)01539-8
Google Scholar
[5]
S. L. Sing, J. An, W. Y. Yeong: Laser and electron-beam powder-bed additive manufacturing of metallic implants: A review on process, materials and designs, Journal of Orthopaedic Research, 34 (2016) 369-385.
DOI: 10.1002/jor.23075
Google Scholar
[6]
C. Kӧrner, Additive manufacturing of metallic components by selective electron beam melting –a review, International Material Reviews, 61 (2016) 361-377.
DOI: 10.1080/09506608.2016.1176289
Google Scholar
[7]
M. Filippini, S. Beretta, L. Patriarca, G. Pasquero, S. Sabbadini, Defect tolerance of a gamma aluminide alloy, Procedia Engineering, 10 (2011) 3677-3682.
DOI: 10.1016/j.proeng.2011.04.605
Google Scholar
[8]
M. Seifi, A. A. Salem, D. P. Satko, U. Ackelid, S. L. Semiatin, J. J. Lewandowski, Journal of Alloys and Compounds, 729 (2017) 1118-1135.
DOI: 10.1016/j.jallcom.2017.09.163
Google Scholar
[9]
S. Biamino, A. Penna, U. Ackelid, S. Sabbadini, O. Tassa, P. Fino, M. Pavese, P. Gennaro, C. Badini, Electron beam melting of Ti-48Al-2Cr-2Nb alloy: Microstructure and mechanical properties investigation, Intermetallics, 19 (2011) 776-781.
DOI: 10.1016/j.intermet.2010.11.017
Google Scholar
[10]
J. Schwerdtfeger and C. Kӧrner, Selective electron beam melting of Ti-48Al-2Nb-2Cr: Microstructure and aluminium loss, Intermetallics, 49 (2014) 29-35.
DOI: 10.1016/j.intermet.2014.01.004
Google Scholar
[11]
M. Todai, T. Nakano, T. Liu, H. Y. Yasuda, K. Hagihara, K. Cho, M. Ueda, M. Takeyama, Effect of building direction on the microstructure and tensile properties of Ti-48Al-2Cr-2Nb alloy additively manufactured by electron beam melting, Additive Manufacturing, 13 (2017) 61-70.
DOI: 10.1016/j.addma.2016.11.001
Google Scholar
[12]
K. Cho, R. Kobayashi, J. Y. Oh, H. Y. Yasuda, M. Todai, T. Nakano, A. Ikeda, M. Ueda, M. Takeyama, Influence of unique layered microstructure on fatigue properties of Ti-48Al- 2Cr-2Nb alloys fabricated by electron beam melting, Intermetallics, 95 (2018) 1-10.
DOI: 10.1016/j.intermet.2018.01.009
Google Scholar
[13]
M. Jouiad, A. L. Gloanec, M. Grange, G. Henaff, Cyclic deformation mechanisms in a cast gamma titanium aluminide alloy, Materials Science and Engineering: A, 400–401 (2005) 409–412.
DOI: 10.1016/j.msea.2005.01.073
Google Scholar
[14]
K. Cho, R. Kobayashi, H. Y. Yasuda, M. Todai, T. Nakano, A. Ikeda, D. Kondo, Y. Nagamachi, M. Ueda, M. Takeyama, Microstructures and Mechanical Properties of TiAl Alloys Fabricated by Electron Beam Melting, MS&T2017 (2017), Pittsburgh, PA.
DOI: 10.4028/www.scientific.net/msf.941.1597
Google Scholar