[1]
M. Daamen, C. Haase, J. Dierdorf, D. A. Molodov, G. Hirt, Twin-roll strip casting: A competitive alternative for the production of high-manganese steels with advanced mechanical properties, Mater. Sci. Eng. A 627 (2015) 72-81.
DOI: 10.1016/j.msea.2014.12.069
Google Scholar
[2]
Y.-Q. Wang, X.-M. Zhang, Z. He, G.-Q. Zu, R.D.K. Misra, Effect of copper precipitates on mechanical and magnetic properties of Cu-bearing non-oriented electrical steel processed by twin-roll strip casting, Mater. Sci. Eng. A 703 (2017) 340-347.
DOI: 10.1016/j.msea.2017.07.075
Google Scholar
[3]
T. Haga, Semisolid strip casting using a twin roll caster equipped with a cooling slope, J. Mater. Process. Technol. 130-131 (2002) 558-561.
DOI: 10.1016/s0924-0136(02)00765-3
Google Scholar
[4]
T. Haga, S. Suzuki, Melt ejection twin roll caster for the strip casting of aluminum alloy, J. Mater. Process. Technol. 137 (2003) 92-95.
DOI: 10.1016/s0924-0136(02)01089-0
Google Scholar
[5]
T. Haga, K. Takahashi, M. Ikawa, H. Watari, A vertical-type twin roll caster for aluminum alloy strips, J. Mater. Process. Technol. 140 (2003) 610-615.
DOI: 10.1016/s0924-0136(03)00835-5
Google Scholar
[6]
T. Haga, K. Takahashi, M. Ikawa, H. Watari, Twin roll casting of aluminum alloy strips. J. Mater. Process. Technol. 153-154 (2004) 42-47.
DOI: 10.1016/j.jmatprotec.2004.04.018
Google Scholar
[7]
H. Watari, K. Davey, M. T. Rasgado, T. Haga, S. Izawa, Semi-solid manufacturing process of magnesium alloys by twin-roll casting, J. Mater. Process. Technol. 155-156 (2004) 1662-1667.
DOI: 10.1016/j.jmatprotec.2004.04.323
Google Scholar
[8]
H. Watari, T. Haga, N. Koga, K. Davey, Feasibility study of twin roll casting process for magnesium alloys, J. Mater. Process. Technol. 192-193 (2007) 300-305.
DOI: 10.1016/j.jmatprotec.2007.04.009
Google Scholar
[9]
G. Hugenschutt, D. Kolbeck, H. G. Wobker, Copper Shells for Twin Roll Casting, Proc. Light Metals, TMS, San Antonio, TX, 2006, pp.859-863.
Google Scholar
[10]
M. Badowski, E. Garate, D. Armendariz, Influence of cooling water temperature on productivity and product quality in twin roll casting with copper shells, Proc. Light Metals, TMS, Seattle, WA, 2010, pp.741-746.
Google Scholar
[11]
J. J. Park, Design of a composite roll for twin-roll casting of Mg-AZ31, Proc. J. Mech. E. Part E: J Process Mech. Eng. 230 (2016) 394~402.
DOI: 10.1177/0954408916653629
Google Scholar
[12]
J. W. Bae, C. G. Kang, S. B. Kang, Mathematical model for the twin roll type sheet continuous casting of magnesium alloy considering thermal flow phenomena, J. Mater. Process. Technol. 191 (2007) 251-255.
DOI: 10.1016/j.jmatprotec.2007.03.058
Google Scholar
[13]
X. M. Zhang, Z. Y. Jiang, L. M. Yang, X. H. Liu, G. D. Wang, A. K. Tieu, Modelling of coupling flow and temperature fields in molten pool during twin-roll sheet casting process, J. Mater. Process. Technol. 187–188 (2007) 339-343.
DOI: 10.1016/j.jmatprotec.2006.11.064
Google Scholar
[14]
H. Zhao, P. Li, L. He, Coupled analysis of temperature and flow during twin-roll casting of magnesium alloy sheet, J. Mater. Process. Technol. 211 (2011) 1197-1202.
DOI: 10.1016/j.jmatprotec.2011.02.001
Google Scholar
[15]
J. J. Park, Finite-element analysis of vertical twin-rolling casting, Met. Mater. Int. 20 (2014) 317-322.
DOI: 10.1007/s12540-013-4021-7
Google Scholar
[16]
J. J. Park, Numerical analysis of cladding processes by twin-roll casting: Mg-AZ31 with aluminum alloys, Int. J. Heat Mass Transfer, 93 (2016) 491-499.
DOI: 10.1016/j.ijheatmasstransfer.2015.10.002
Google Scholar
[17]
J. J. Park, Numerical analysis of twin-roll casting to fabricate a laminated sheet from melts, Int. J. Heat Mass Transfer, 100 (2016) 590-598.
DOI: 10.1016/j.ijheatmasstransfer.2016.04.122
Google Scholar