A Subsurface Fatigue Crack Generation Model in near Alpha Titanium at Low Temperature

Article Preview

Abstract:

The subsurface fatigue crack generation processes in near α type titanium alloy were divided into four steps: (1) development of a saturated dislocation structure by cyclical micro-plastic strain accumulation, (2) generation of localized slip and/or microcracking to relax the stress concentration in the vicinity of a boundary, (3) microcrack growth and transition to main crack, and (4) crack propagation. The experimentals on transgranular facets formation in Ti-Fe-O alloy were reviewed and a subsurface fatigue crack generation model was discussed. The β platelets which were aligned between the recrystallized α grain and the recovered α grain were responsible for the microcrack generation to form (0001) tansgranular facet in the recrystallized α grains. A combination of the shear stress and tensile stress normal to the basal plane may give a trigger of the (0001) microcracking in the recrystallized α grain. The localized shear stress following slip off on the basal plane was activated at the microcrack tip in the recrystallizedαgrain, and the microcrack grew into the recrystallized α grain to form (0001) transgranular facet.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1336-1341

Citation:

Online since:

December 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. Li, O. Umezawa, A review of subsurface crack initiation models in high-cycle fatigue for titanium alloys, Key Eng. Mater. 741 (2017) 76-81.

DOI: 10.4028/www.scientific.net/kem.741.76

Google Scholar

[2] O. Umezawa, K. Nagai, Subsurface crack generation in high-cycle fatigue for high strength alloys, ISIJ Inter. 37 (1997) 1170-1179.

DOI: 10.2355/isijinternational.37.1170

Google Scholar

[3] M.R. Bache, A review of dwell sensitive fatigue in titanium alloys: the role of microstructure, texture and operating conditions, Inter. J. Fatigue 25 (2003) 1079-1087.

DOI: 10.1016/s0142-1123(03)00145-2

Google Scholar

[4] E.E. Sackett, L. Germain, M.R. Bache, Crystal plasticity, fatigue crack initiation and fatigue performance of advanced titanium alloys, Inter. J. Fatigue 29 (2007) 2015-2021.

DOI: 10.1016/j.ijfatigue.2006.12.011

Google Scholar

[5] I. Bantounas, D. Dye, T.C. Lindley, The role of microtexture on the faceted fracture morphology in Ti-6Al-4V subjected to high-cycle fatigue, Acta Mater. 58 (2010) 3908-3918.

DOI: 10.1016/j.actamat.2010.03.036

Google Scholar

[6] I. Bantounas, T.C. Lindley, D. Rugg, D. Dye, Effect of microtexture on fatigue cracking in Ti-6Al-4V, Acta Mater. 55 (2007) 5655-5665.

DOI: 10.1016/j.actamat.2007.06.034

Google Scholar

[7] F. Brider, P. Villechaise, J. Mendez, Slip and fatigue crack formation processes in an α/β titanium alloy in relation to crystallographic texture on different scales, Acta Mater. 56 (2008) 3951-3962.

DOI: 10.1016/j.actamat.2008.04.036

Google Scholar

[8] W. Li, O. Umezawa, N. Koga, Analysis of subsurface fatigue crack generation in Ti-Fe-O alloy at low temperature, ISIJ Inter. 58 (2018) 359-363.

DOI: 10.2355/isijinternational.isijint-2017-514

Google Scholar

[9] O. Umezawa, T. Yuasa and W. Li: submitted to ISIJ Inter. (2018).

Google Scholar

[10] O. Umezawa, K. Nagai, Critical experiments and analyses at cryogenice temperature to promote a bettwer understanding of mechanical properties in high-strength alloys, in: U. Balachandran (Ed.), Advances in Cryogenic Engineering, Vol. 60, AIP, N.Y., 2014, 327-332.

DOI: 10.1063/1.4860644

Google Scholar

[11] H. Yokoyama, O. Umezawa, K. Nagai, T. Suzuki, K. Kokubo, Cyclic deformation, dislocation structure and internal fatigue crack generation in Ti-Fe-O alloy at liquid nitrogen temperature, Metall. Mater. Trans. A 31 (2000) 2793-2805.

DOI: 10.1007/bf02830339

Google Scholar

[12] W. Li, O. Umezawa, Effects of α-grain structure on cyclic deformation structure of Ti-Fe-O alloy at low temperature, in: V. Venkatesh, A.L. Pilchak, J.E. Allison, S. Ankem, R. Boyer, J. Christodoulou, H.L. Fraser, M.A. Imam, Y. Kosaka, H.J. Rack, A. Chatterjee, A. Woodfield (Eds.), Proceedings of the 13th World Conference on Titanium, TMS, 2016, 843-847.

DOI: 10.1002/9781119296126

Google Scholar

[13] M. Morita, O. Umezawa, Slip deformation analysis based on full constraints model for α-titanium alloy at low temperature, Mater. Trans. 52 (2011) 1595-1602.

DOI: 10.2320/matertrans.l-m2011815

Google Scholar

[14] A.L. Pilchak, R.E.A. Williams, J.C. Williams, Crystallography of fatigue crack initiation and growth in fully lamellar Ti-6Al-4V, Metall. Mater. Trans. A 41 (2010) 106-124.

DOI: 10.1007/s11661-009-0064-2

Google Scholar

[15] O. Umezawa, K. Nagai, K. Ishikawa, Subsurface crack initiation in high cycle fatigue of Ti-6Al-4V alloys at cryogenic temperatures, Tetsu-to-Hagane 76 (1990) 924-931.

DOI: 10.2355/tetsutohagane1955.76.6_924

Google Scholar

[16] M. Morita, O. Umezawa, Analysis of heterogeneous deformation behavior by full constraints model in alpha-titanium alloy, in: L. Zhou, H. Chang, Y. Yu, D. Xu (Eds.), Proceedings of the 12th World Conference on Titanium, vol.2, Science Press Beijing, 2012, pp.1100-1103.

Google Scholar

[17] O. Umezawa, K. Ishikawa, Phenomenological aspects of fatigue life and fatigue crack initiation in high strength alloys at cryogenic temperature, Mater. Sci. Eng. A 176 (1994) 397-403.

DOI: 10.1016/0921-5093(94)91005-7

Google Scholar

[18] H. Kitagawa, S. Takahashi, C.M. Suh, S. Miyashita, Quantitative analysis of fatigue process - microcracks and slip lines under cyclic strains, in: J.T. Fong (Ed.), Fatigue Mechanisms, ASTM STP 675, ASTM, Philadelphia, 1978, pp.420-447.

DOI: 10.1520/stp35901s

Google Scholar

[19] Y. Murakami, Quantitative evaluation of effects of defects and non-metallic inclusions on fatigue strength of metals, Tetsu-to-Hagane 75 (1989) 1267-1277.

DOI: 10.2355/tetsutohagane1955.75.8_1267

Google Scholar

[20] M. Hamada, O. Umezawa, Evaluation of subsurface fatigue crack life in forged Ti-6Al-4V alloys at cryogenic temperatures, ISIJ Inter. 49 (2009) 124-131.

DOI: 10.2355/isijinternational.49.124

Google Scholar