Relationship between Microstructure and Magnetic Properties of Nano-Scale Particles Formed in Cu-Ni-(FeCo) Alloys

Article Preview

Abstract:

Numerous studies have been conducted to develop next-generation recording technology in spintronics. Because ultrafine magneitc particles are vital components of the technology, the interplay between the microsturcture and magnetic properties has attracted attention extensively in recent years. We focused on the relationship between the microstructure and magnetic properties of Cu-Ni-X (X=Fe, Co, FeCo) alloys comprising nanogranular magnetic particles. In this work, we prepared Cu-20 at% Ni-5 at% (FeCo), Cu-20 at% Ni-5 at% Fe, Cu-20 at% Ni-5 at% Co and examined the changes of microstructure and magnetic properties associated with heat treatments and composition. To examaine microstructural evolution of the alloy specimens, we conducted transmission electron microscope observations (TEM) with the as-quenched specimens and those aged at at 773-1073 K. We also carried out magneto-thermo gravimetry (MTG) measurements, superconducting quantum interference device (SQUID) measurements, magnetoresistance (MR) measurements and first-principles calculations based on the Koster-Korringa-Rostker (KKR) method with the Coherent Potential Approximation (CPA), to investigate the magnetic properties. The present work confirmed that the microstructure significantly changed, depending on the composition and heat treatment conditions. The present work also revealed that the magnetic properties closely correlated with the microstructure of samples.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1324-1329

Citation:

Online since:

December 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. M. Levy, S. Zhang, T. Ono and T. Shinjo, Phys. Rev. B, 52 (1995) 16049.

Google Scholar

[2] A. E. Berkowitz, J. R. Mitcell, M. J. Carey, A. P. Young, S. Zhang, F. E. Spada, F.T. Parker, A. Hutten and G. Thomas, Phys. Rev. Lett., 68 (1992) 3745.

DOI: 10.1103/physrevlett.68.3745

Google Scholar

[3] J. Q. Wang, P. Xiong, and G. Xiao, Phys. Rev., B47(1993) 8341-8344.

Google Scholar

[4] J. Q. Xiao, J. S. jiang and C. L. Chien, Phys. Rev. Lett., 68 (1992) 3749.

Google Scholar

[5] L. H. Chen, S. Jin, T. H. Tiefel, S. H. Chang, and M. Eibschutz, Phys. Rev. B49 (1994) 9194-9197.

Google Scholar

[6] M. Takeda, N. Wada, Z. Hiroi, J. Kadono, M. Perez and S. Rivoirard, Mater. Lett. 98 (2013) 201-204.

Google Scholar

[7] N. Wada, K. Takamatsu, M. Takeda, M. Takeguchi and M. Blanchin, Int. J. Mat. Res.101 (2010) 3 361-365.

Google Scholar

[8] N. Wada, K. Kuwada, J. S. Kim, M. Takeguchi and M. Takeda, Adv. Cond. Matter Phys. (2015) 865695.

Google Scholar

[9] S. Kang, M. Takeda, D. Bae, K. Takanashi and M. Mizuguchi, Jpn. J. Appl. Phys. 50 (2011) 045807.

Google Scholar

[10] T. Moriki, S. Kang, M. Takeguchi and M. Takeda, J. Nanosci. Nanotechnol 12 (2012) 1-4.

Google Scholar

[11] Infomation on http://kkr.issp.u-tokyo.ac.jp.

Google Scholar

[12] F. Vazquez, J. A. Bonachela, C. Lopez and M. A. Munoz, Phys. Rev. Lett. 106 (2011) 235702.

Google Scholar