[1]
K. Kato, Y. Nozaki, A. Matsumoto, Properties of Sintered TiAI by Injection Molding, J. Jpn Soc. Powder Powder Metallurgy, 39(1992)875-878.
DOI: 10.2497/jjspm.39.875
Google Scholar
[2]
K. Kato, A. Matsumoto, Y. Nozaki, T. Ieki, Metal Injection Molding of Pre-alloyed TiAl Powders with Various Ti/Al Ratios, J. Jpn Soc. Powder Powder Metallurgy, 42, (1995)1068-1072.
DOI: 10.2497/jjspm.42.1068
Google Scholar
[3]
T. Shimizu, A. Kitajima, T. Sano, in: K. Kosuge, H. Nagai (Eds.), Proceedings of 2000 Powder Metallurgy World Congress, Japan Society of Powder and Powder Metallurgy, Kyoto, Japan, 2000, p.292–295.
DOI: 10.2497/jjspm.47.292
Google Scholar
[4]
H. Zhanga, X. Hea, X. Qua,b, L. Zhao, Microstructure and mechanical properties of high Nb containing TiAl alloy parts fabricated by metal injection molding, Materials Science and Engineering A, 526 (2009) 31–37.
DOI: 10.1016/j.msea.2009.07.003
Google Scholar
[5]
W. Limberg∗, T. Ebel, F. Pyczak, M. Oehring, F.P. Schimansky, Influence of the sintering atmosphere on the tensile properties of MIM-processed Ti 45Al 5Nb 0.2B 0.2C, Materials Science and Engineering A, 552 (2012) 323– 329.
DOI: 10.1016/j.msea.2012.05.047
Google Scholar
[6]
T. Osada, T. Kanda, K. Kudo, F. Tsumori, H. Miura, High temperature Mechanical Properties of YiAl Intermetallic Alloy Parts Fabricated by Metal Powder Injection Molding, J. Jpn Soc. Powder Powder Metallurgy, 63 (2016) 457-476.
DOI: 10.2497/jjspm.63.457
Google Scholar
[7]
U. Bohnenkamp, G. X. Wang, T. J. Jewett, M. Dahms, A quantitative investigation of phase formation during annealing of cold-extruded elemental powder mixtures Ti-48 at.% AI and Ti-48 at.% AI-2 at.% Cr, Intermetallics, 2 (1994) 275-283.
DOI: 10.1016/0966-9795(94)90013-2
Google Scholar
[8]
Y.Xia, P.Yub, G. B. Schaffer, M. Qian, Cobalt-doped Ti–48Al–2Cr–2Nb alloy fabricated by cold compaction and pressureless sintering, Materials Science and Engineering A, 574(2013)176–185.
DOI: 10.1016/j.msea.2013.03.023
Google Scholar
[9]
A. MAKINO, Y. ISHIDA, S. KITABAYASHI, Y. ODA, S. GONO, M. SAITO, Spontaneous Ignition Temperature and Burning Velocity just after the Ignition in the SHS Process for Ti-Al System with Rectangular Shape, Transactions of the Japan Society of Mechanical Engineers Series B, 76(2010)1564-1570.
DOI: 10.1299/kikaib.78.1650
Google Scholar
[10]
Y. Kaieda, M. Otaguchi, N. Oguro, T. Oie, S. Shite and M. Hatakeyama, Proc. of the MRS Int . Meeting on Advanced Materials, 9 (1989), 623.
Google Scholar
[11]
A. Hibino, R. Watanabe, Reaction Mechanism of Combustion Synthesis of TiAl Intermetallic Compound, J. Japan Inst. Metals, 55(1991), 1256-1262.
DOI: 10.2320/jinstmet1952.55.11_1256
Google Scholar
[12]
Y. Tomota, K. Kimura,T. Suzuki, T. Tslljimoto, Microstructure Control of a TiAl Base Alloy Prepared by Reactive-Sintering by Low Temperature HIP, J. Japan Inst. Metals, 60 (1196) 1007-1012.
DOI: 10.2320/jinstmet1952.60.10_1007
Google Scholar
[13]
K. Kobayashi, A. Sugiyama, K. Ozaki, C. Wen, Consolidation of Titanium Tri-aluminide using by Spark Plasma Sintering, J. Jpn Soc. Powder Powder Metallurgy, 44 (1997) 554-559.
DOI: 10.2497/jjspm.44.554
Google Scholar
[14]
M. Kobashi, S. Miyake, N. Kanetake, Hierarchical open cellular porous TiAl manufactured by space holder Process, Intermetallics 42 (2013) 32-34.
DOI: 10.1016/j.intermet.2013.04.017
Google Scholar
[15]
N. Takata, K. Uematsu1, M. Kobashi, Compressive properties of porous Ti–Al alloys fabricated by reaction synthesis using a space holder powder, Materials Science & Engineering A, 697 (2017) 66–70.
DOI: 10.1016/j.msea.2017.05.015
Google Scholar
[16]
A. Makino, Fundamental aspects of the heterogeneous flame in the self propagating high-temperature synthesis (SHS) process. Prog Energy Combust Sci., 27(2001)1-74.
DOI: 10.1016/s0360-1285(00)00004-6
Google Scholar
[17]
E.G. Kandalova, V. I. Nikitin, J. Wanqi, A. G. Makarenko, Effect of Al powder content on SHS AleTi grain refiner. Mater. Lett., 54(2002)131-134.
DOI: 10.1016/s0167-577x(01)00550-x
Google Scholar