The Effect of Potential on Surface Characteristic and Corrosion Resistance of Commercial Pure Titanium Processed by Anodic Oxidation Treatment

Article Preview

Abstract:

Anodic oxidation treatment of commercial pure titanium was carried out at the voltage of 30, 50 V in 0.5 M H2SO4 solution so as to obtain the effects of the anodic potential on the surface characteristic and corrosion resistance of passive film. The morphology and corrosion resistance of the treated samples were investigated using scanning electron microscopy (SEM), atomic force microscope (AFM), X-ray photoelectron spectroscopy (XPS), potentiodynamic polarization curves and electrode impedance spectroscopy (EIS). The results show that increasing anodic potential can significantly enhance the corrosion resistance of commercial pure titanium.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1692-1697

Citation:

Online since:

December 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Diamanti M.V., Pedeferri M.P. Effect of anodic oxidation parameters on the titanium oxides formation [J]. Corrosion Science, 2007, 49(2): 939-48.

DOI: 10.1016/j.corsci.2006.04.002

Google Scholar

[2] Jiang Z, Dai X, Norby T, et al. Investigation of pitting resistance of titanium based on a modified point defect model [J]. Corrosion Science, 2011, 53(2): 815-21.

DOI: 10.1016/j.corsci.2010.11.015

Google Scholar

[3] Jiang Z, Norby T, Middleton H. Evaluation of metastable pitting on titanium by charge integration of current transients [J]. Corrosion Science, 2010, 52(10): 3158-61.

DOI: 10.1016/j.corsci.2010.03.012

Google Scholar

[4] Narayanan A.R., Seshadri S.K. Phosphoric acid anodization of Ti-6Al-4V Structural and corrosion aspects [J]. Corrosion Science, 2007, 49(2): 542-58.

DOI: 10.1016/j.corsci.2006.06.021

Google Scholar

[5] Fu T.L., Zhan Z.l., Zhang L, et al. Effect of surface mechanical attrition treatment on corrosion resistance of commercial pure titanium [J]. Surface & Coatings Technology, 2015, 280(129-35.

DOI: 10.1016/j.surfcoat.2015.08.041

Google Scholar

[6] Ningshen S, Mudali U.K., Ramya S, et al. Corrosion behaviour of AISI type 304L stainless steel in nitric acid media containing oxidizing species [J]. Corrosion Science, 2011, 53(1): 64-70.

DOI: 10.1016/j.corsci.2010.09.023

Google Scholar

[7] Avelar-Batista J.C., Spain E, Housden J, et al. Plasma nitriding of Ti6Al4V alloy and AISI M2 steel substrates using D.C. glow discharges under a triode configuration [J]. Surface & Coatings Technology, 2005, 200(5): 1954-61.

DOI: 10.1016/j.surfcoat.2005.08.037

Google Scholar

[8] Robin A, Meirelis J.P. Influence of fluoride concentration and pH on corrosion behavior of Ti-6Al-4V and Ti-23Ta alloys in artificial saliva [J]. Materials & Corrosion, 2015, 58(3): 173-80.

DOI: 10.1002/maco.200604004

Google Scholar

[9] Krawiec H, Vignal V, Schwarzenboeck E, et al. Role of plastic deformation and microstructure in the micro-electrochemical behaviour of Ti-6Al-4V in sodium chloride solution [J]. Electrochimica Acta, 2013, 104(8): 400-6.

DOI: 10.1016/j.electacta.2012.12.029

Google Scholar

[10] Wang Z.B., Hu H.X., Zheng Y.G., et al. Comparison of the corrosion behavior of pure titanium and its alloys in fluoride-containing sulfuric acid [J]. Corrosion Science, 2016, 103: 50-65.

DOI: 10.1016/j.corsci.2015.11.003

Google Scholar

[11] Leiva-Garc A.R., Fernandes J.C.S., Mu Oz-Portero M.J., et al. Study of the sensitisation process of a duplex stainless steel (UNS 1.4462) by means of confocal microscopy and localised electrochemical techniques [J]. Corrosion Science, 2015, 94: 327-41.

DOI: 10.1016/j.corsci.2015.02.016

Google Scholar

[12] Belo M.D.C., Hakiki N.E., Ferreira M.G.S. Semiconducting properties of passive films formed on nickel-base alloys type Alloy 600: influence of the alloying elements [J]. Electrochimica Acta, 1999, 44(14): 2473-81.

DOI: 10.1016/s0013-4686(98)00372-7

Google Scholar