Deformation Properties of Austenitic Stainless Steels with Different Stacking Fault Energies

Article Preview

Abstract:

In FCC metals a single parameter – stacking fault energy (SFE) – can help to predict the expectable way of deformation such as martensitic deformation, deformation twinning or pure dislocation glide. At low SFE one can expect the perfect dislocations to dissociate into partial dislocations, but at high SFE this separation is more restricted. The role of the magnitude of the stacking fault energy on the deformation microstructures and tensile behaviour of different austenitic steels have been investigated using uniaxial tensile testing and electron backscatter diffraction (EBSD). The SFE was determined by using quantum mechanical first-principles approach. By using plasticity models we make an attempt to explain and interpret the different strain hardening behaviour of stainless steels with different stacking fault energies.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

190-197

Citation:

Online since:

December 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Grässel, O., Krüger, L., Frommeyer, G., & Meyer, L. W. (2000). High strength Fe-Mn-(Al, Si) TRIP/TWIP steels development - properties - application. International Journal of Plasticity, 16(10), 1391–1409.

DOI: 10.1016/s0749-6419(00)00015-2

Google Scholar

[2] Pierce, D. T., Jiménez, J. A., Bentley, J., Raabe, D., & Wittig, J. E. (2015). The influence of stacking fault energy on the microstructural and strain- hardening evolution of Fe – Mn – Al – Si steels during tensile deformation. Acta Materialia, 100, 178–190.

DOI: 10.1016/j.actamat.2015.08.030

Google Scholar

[3] Lu, J., Hultman, L., Holmström, E., Antonsson, K. H., Grehk, M., Li, W., … Golpayegani, A. (2016). Stacking fault energies in austenitic stainless steels. Acta Materialia, 111(June), 39–46.

DOI: 10.1016/j.actamat.2016.03.042

Google Scholar

[4] Gutierrez-Urrutia, I., & Raabe, D. (2011). Dislocation and twin substructure evolution during strain hardening of an Fe-22 wt.% Mn-0.6 wt.% C TWIP steel observed by electron channeling contrast imaging. Acta Materialia, 59(16), 6449–6462.

DOI: 10.1016/j.actamat.2011.07.009

Google Scholar

[5] Bouaziz, O., Allain, S., Scott, C. P., Cugy, P., & Barbier, D. (2011). High manganese austenitic twinning induced plasticity steels: A review of the microstructure properties relationships. Current Opinion in Solid State and Materials Science, 15(4), 141–168.

DOI: 10.1016/j.cossms.2011.04.002

Google Scholar

[6] Bampton, C. C., Jones, I. P., & Loretto, M. H. (1978). Stacking fault energy measurements in some austenitic stainless steels. Acta Metallurgica, 26(1), 39–51.

DOI: 10.1016/0001-6160(78)90200-6

Google Scholar

[7] Pontini, A. E., & Hermida, J. D. (1997). X-ray diffraction measurement of the stacking fault energy reduction induced by hydrogen in an AISI 304 steel. Scripta Materialia, 37(11), 1831–1837.

DOI: 10.1016/s1359-6462(97)00332-1

Google Scholar

[8] Vitos, L., Nilsson, J. O., & Johansson, B. (2006). Alloying effects on the stacking fault energy in austenitic stainless steels from first-principles theory. Acta Materialia, 54(14), 3821–3826.

DOI: 10.1016/j.actamat.2006.04.013

Google Scholar

[9] Kibey, S., Liu, J. B., Johnson, D. D., & Sehitoglu, H. (2007). Predicting twinning stress in fcc metals: Linking twin-energy pathways to twin nucleation. Acta Materialia, 55(20), 6843–6851.

DOI: 10.1016/j.actamat.2007.08.042

Google Scholar

[10] Lu S., Li R., Kádas K., Zhang H., Tian Y., Kwon S. K., … Vitos, L. (2017). Stacking fault energy of C-alloyed steels: The effect of magnetism. Acta Materialia, 122(October), 72–81.

DOI: 10.1016/j.actamat.2016.09.038

Google Scholar

[11] Raabe, D., Roters, F., Neugebauer, J., Gutierrez-Urrutia, I., Hickel, T., Bleck, W., … Mayer, J. (2016). Ab initio-guided design of twinning-induced plasticity steels. MRS Bulletin, 41(4), 320-325.

DOI: 10.1557/mrs.2016.63

Google Scholar

[12] Li, W., Lu, S., Kim, D., Kokko, K., Hertzman, S., Kwon, S. K., & Vitos, L. (2016). First-principles prediction of the deformation modes in austenitic Fe-Cr-Ni alloys. Applied Physics Letters, 108(8).

DOI: 10.1063/1.4942809

Google Scholar

[13] Peierls, R. (1940). The size of a dislocation. Proceedings of the Physical Society, 52(1), 34.

Google Scholar

[14] Shen, Y. F., Li, X. X., Sun, X., Wang, Y. D., & Zuo, L. (2012). Twinning and martensite in a 304 austenitic stainless steel. Materials Science and Engineering A, 552(February 2017), 514–522.

DOI: 10.1016/j.msea.2012.05.080

Google Scholar

[15] Wu, X., Pan, X., Mabon, J. C., Li, M., & Stubbins, J. F. (2006). The role of deformation mechanisms in flow localization of 316L stainless steel. Journal of Nuclear Materials, 356(1–3), 70–77.

DOI: 10.1016/j.jnucmat.2006.05.047

Google Scholar

[16] Steinmetz, D. R., Jäpel, T., Wietbrock, B., Eisenlohr, P., Gutierrez-Urrutia, I., Saeed-Akbari, A., … Raabe, D. (2013). Revealing the strain-hardening behavior of twinning-induced plasticity steels: Theory, simulations, experiments. Acta Materialia, 61(2), 494–510.

DOI: 10.1016/j.actamat.2012.09.064

Google Scholar

[17] Gyorffy, B. L., Pindor, A. J., Staunton, J., Stocks, G. M., & Winter, H. (1985). A first-principles theory of ferromagnetic phase transitions in metals. Journal of Physics F: Metal Physics, 15(6), 1337.

DOI: 10.1088/0305-4608/15/6/018

Google Scholar

[18] Staunton, J., Gyorffy, B. L., Pindor, A. J., Stocks, G. M., & Winter, H. (1984). The disordered local moment, picture of itinerant magnetism at finite temperatures. Journal of magnetism and magnetic materials, 45(1), 15-22.

DOI: 10.1016/0304-8853(84)90367-6

Google Scholar

[19] Soven, P. (1967). Coherent-potential model of substitutional disordered alloys. Physical Review, 156(3), 809.

DOI: 10.1103/physrev.156.809

Google Scholar

[20] Vitos, L., Abrikosov, I. A., & Johansson, B. (2001). Anisotropic lattice distortions in random alloys from first-principles theory. Physical review letters, 87(15), 156401.

DOI: 10.1103/physrevlett.87.156401

Google Scholar

[21] Vitos, L. (2007). Computational quantum mechanics for materials engineers: the EMTO method and applications. Springer Science & Business Media.

Google Scholar

[22] Vitos, L. (2001). Total-energy method based on the exact muffin-tin orbitals theory. Physical Review B, 64(1), 014107.

DOI: 10.1103/physrevb.64.014107

Google Scholar

[23] Perdew, J. P., Chevary, J. A., Vosko, S. H., Jackson, K. A., Pederson, M. R., Singh, D. J., & Fiolhais, C. (1992). Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Physical Review B, 46(11), 6671.

DOI: 10.1103/physrevb.46.6671

Google Scholar

[24] Byun, T. S. (2003). On the stress dependence of partial dislocation separation and deformation microstructure in austenitic stainless steels. Acta Materialia, 51(11), 3063–3071.

DOI: 10.1016/s1359-6454(03)00117-4

Google Scholar