[1]
Grässel, O., Krüger, L., Frommeyer, G., & Meyer, L. W. (2000). High strength Fe-Mn-(Al, Si) TRIP/TWIP steels development - properties - application. International Journal of Plasticity, 16(10), 1391–1409.
DOI: 10.1016/s0749-6419(00)00015-2
Google Scholar
[2]
Pierce, D. T., Jiménez, J. A., Bentley, J., Raabe, D., & Wittig, J. E. (2015). The influence of stacking fault energy on the microstructural and strain- hardening evolution of Fe – Mn – Al – Si steels during tensile deformation. Acta Materialia, 100, 178–190.
DOI: 10.1016/j.actamat.2015.08.030
Google Scholar
[3]
Lu, J., Hultman, L., Holmström, E., Antonsson, K. H., Grehk, M., Li, W., … Golpayegani, A. (2016). Stacking fault energies in austenitic stainless steels. Acta Materialia, 111(June), 39–46.
DOI: 10.1016/j.actamat.2016.03.042
Google Scholar
[4]
Gutierrez-Urrutia, I., & Raabe, D. (2011). Dislocation and twin substructure evolution during strain hardening of an Fe-22 wt.% Mn-0.6 wt.% C TWIP steel observed by electron channeling contrast imaging. Acta Materialia, 59(16), 6449–6462.
DOI: 10.1016/j.actamat.2011.07.009
Google Scholar
[5]
Bouaziz, O., Allain, S., Scott, C. P., Cugy, P., & Barbier, D. (2011). High manganese austenitic twinning induced plasticity steels: A review of the microstructure properties relationships. Current Opinion in Solid State and Materials Science, 15(4), 141–168.
DOI: 10.1016/j.cossms.2011.04.002
Google Scholar
[6]
Bampton, C. C., Jones, I. P., & Loretto, M. H. (1978). Stacking fault energy measurements in some austenitic stainless steels. Acta Metallurgica, 26(1), 39–51.
DOI: 10.1016/0001-6160(78)90200-6
Google Scholar
[7]
Pontini, A. E., & Hermida, J. D. (1997). X-ray diffraction measurement of the stacking fault energy reduction induced by hydrogen in an AISI 304 steel. Scripta Materialia, 37(11), 1831–1837.
DOI: 10.1016/s1359-6462(97)00332-1
Google Scholar
[8]
Vitos, L., Nilsson, J. O., & Johansson, B. (2006). Alloying effects on the stacking fault energy in austenitic stainless steels from first-principles theory. Acta Materialia, 54(14), 3821–3826.
DOI: 10.1016/j.actamat.2006.04.013
Google Scholar
[9]
Kibey, S., Liu, J. B., Johnson, D. D., & Sehitoglu, H. (2007). Predicting twinning stress in fcc metals: Linking twin-energy pathways to twin nucleation. Acta Materialia, 55(20), 6843–6851.
DOI: 10.1016/j.actamat.2007.08.042
Google Scholar
[10]
Lu S., Li R., Kádas K., Zhang H., Tian Y., Kwon S. K., … Vitos, L. (2017). Stacking fault energy of C-alloyed steels: The effect of magnetism. Acta Materialia, 122(October), 72–81.
DOI: 10.1016/j.actamat.2016.09.038
Google Scholar
[11]
Raabe, D., Roters, F., Neugebauer, J., Gutierrez-Urrutia, I., Hickel, T., Bleck, W., … Mayer, J. (2016). Ab initio-guided design of twinning-induced plasticity steels. MRS Bulletin, 41(4), 320-325.
DOI: 10.1557/mrs.2016.63
Google Scholar
[12]
Li, W., Lu, S., Kim, D., Kokko, K., Hertzman, S., Kwon, S. K., & Vitos, L. (2016). First-principles prediction of the deformation modes in austenitic Fe-Cr-Ni alloys. Applied Physics Letters, 108(8).
DOI: 10.1063/1.4942809
Google Scholar
[13]
Peierls, R. (1940). The size of a dislocation. Proceedings of the Physical Society, 52(1), 34.
Google Scholar
[14]
Shen, Y. F., Li, X. X., Sun, X., Wang, Y. D., & Zuo, L. (2012). Twinning and martensite in a 304 austenitic stainless steel. Materials Science and Engineering A, 552(February 2017), 514–522.
DOI: 10.1016/j.msea.2012.05.080
Google Scholar
[15]
Wu, X., Pan, X., Mabon, J. C., Li, M., & Stubbins, J. F. (2006). The role of deformation mechanisms in flow localization of 316L stainless steel. Journal of Nuclear Materials, 356(1–3), 70–77.
DOI: 10.1016/j.jnucmat.2006.05.047
Google Scholar
[16]
Steinmetz, D. R., Jäpel, T., Wietbrock, B., Eisenlohr, P., Gutierrez-Urrutia, I., Saeed-Akbari, A., … Raabe, D. (2013). Revealing the strain-hardening behavior of twinning-induced plasticity steels: Theory, simulations, experiments. Acta Materialia, 61(2), 494–510.
DOI: 10.1016/j.actamat.2012.09.064
Google Scholar
[17]
Gyorffy, B. L., Pindor, A. J., Staunton, J., Stocks, G. M., & Winter, H. (1985). A first-principles theory of ferromagnetic phase transitions in metals. Journal of Physics F: Metal Physics, 15(6), 1337.
DOI: 10.1088/0305-4608/15/6/018
Google Scholar
[18]
Staunton, J., Gyorffy, B. L., Pindor, A. J., Stocks, G. M., & Winter, H. (1984). The disordered local moment, picture of itinerant magnetism at finite temperatures. Journal of magnetism and magnetic materials, 45(1), 15-22.
DOI: 10.1016/0304-8853(84)90367-6
Google Scholar
[19]
Soven, P. (1967). Coherent-potential model of substitutional disordered alloys. Physical Review, 156(3), 809.
DOI: 10.1103/physrev.156.809
Google Scholar
[20]
Vitos, L., Abrikosov, I. A., & Johansson, B. (2001). Anisotropic lattice distortions in random alloys from first-principles theory. Physical review letters, 87(15), 156401.
DOI: 10.1103/physrevlett.87.156401
Google Scholar
[21]
Vitos, L. (2007). Computational quantum mechanics for materials engineers: the EMTO method and applications. Springer Science & Business Media.
Google Scholar
[22]
Vitos, L. (2001). Total-energy method based on the exact muffin-tin orbitals theory. Physical Review B, 64(1), 014107.
DOI: 10.1103/physrevb.64.014107
Google Scholar
[23]
Perdew, J. P., Chevary, J. A., Vosko, S. H., Jackson, K. A., Pederson, M. R., Singh, D. J., & Fiolhais, C. (1992). Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Physical Review B, 46(11), 6671.
DOI: 10.1103/physrevb.46.6671
Google Scholar
[24]
Byun, T. S. (2003). On the stress dependence of partial dislocation separation and deformation microstructure in austenitic stainless steels. Acta Materialia, 51(11), 3063–3071.
DOI: 10.1016/s1359-6454(03)00117-4
Google Scholar