Understanding Hot vs. Cold Rolled Medium Manganese Steel Deformation Behavior Using In Situ Microscopic Digital Image Correlation

Article Preview

Abstract:

We address the differences in yield stresses between hot and cold rolled medium manganese steel showing continuous yielding. Continuous yielding in both, the hot and cold rolled samples were resulting from reverted austenite islands plastically deforming first and less strain in the tempered martensite matrix. At higher global strains, strain was taken up not only by the reverted austenite, but also by tempered martensite and fresh martensite formed from the austenite through martensitic phase transformation during deformation. Strain localization was also observed in the hot rolled samples. This localization is caused by cumulative deformation of colonies of lamellar reverted austenite islands. It is interpreted in terms of the spatial alignment of austenite colonies to the loading direction in addition to the crystallographic orientation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

198-205

Citation:

Online since:

December 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Wang, W. Cao, J. Shi, C. Huang, H. Dong, Deformation microstructures and strengthening mechanisms of an ultrafine grained duplex medium-Mn steel, Mater. Sci. Eng. A. 562 (2013) 89–95.

DOI: 10.1016/j.msea.2012.11.044

Google Scholar

[2] S. Lee, B.C.D. Cooman, On the Selection of the Optimal Intercritical Annealing Temperature for Medium Mn TRIP Steel, Metall. Mater. Trans. A. 44 (2013) 5018–5024.

DOI: 10.1007/s11661-013-1860-2

Google Scholar

[3] R. Zhang, W.Q. Cao, Z.J. Peng, J. Shi, H. Dong, C.X. Huang, Intercritical rolling induced ultrafine microstructure and excellent mechanical properties of the medium-Mn steel, Mater. Sci. Eng. A. 583 (2013) 84–88.

DOI: 10.1016/j.msea.2013.06.067

Google Scholar

[4] Y.-K. Lee, J. Han, Current opinion in medium manganese steel, Mater. Sci. Technol. 31 (2014) 843–856.

Google Scholar

[5] C.-Y. Lee, J. Jeong, J. Han, S.-J. Lee, S. Lee, Y.-K. Lee, Coupled strengthening in a medium manganese lightweight steel with an inhomogeneously grained structure of austenite, Acta Mater. 84 (2015) 1–8.

DOI: 10.1016/j.actamat.2014.10.032

Google Scholar

[6] E.J. Seo, L. Cho, B.C.D. Cooman, Application of Quenching and Partitioning Processing to Medium Mn Steel, Metall. Mater. Trans. A. 46 (2015) 27–31.

DOI: 10.1007/s11661-014-2657-7

Google Scholar

[7] S. Lee, S.-J. Lee, B.C. De Cooman, Austenite stability of ultrafine-grained transformation-induced plasticity steel with Mn partitioning, Scr. Mater. 65 (2011) 225–228.

DOI: 10.1016/j.scriptamat.2011.04.010

Google Scholar

[8] J.H. Ryu, D.-I. Kim, H.S. Kim, H.K.D.H. Bhadeshia, D.-W. Suh, Strain partitioning and mechanical stability of retained austenite, Scr. Mater. 63 (2010) 297–299.

DOI: 10.1016/j.scriptamat.2010.04.020

Google Scholar

[9] C.C. Tasan, M. Diehl, D. Yan, M. Bechtold, F. Roters, L. Schemmann, C. Zheng, N. Peranio, D. Ponge, M. Koyama, K. Tsuzaki, D. Raabe, An Overview of Dual-Phase Steels: Advances in Microstructure-Oriented Processing and Micromechanically Guided Design, Annu. Rev. Mater. Res. 45 (2015) 391–431.

DOI: 10.1146/annurev-matsci-070214-021103

Google Scholar

[10] C.C. Tasan, M. Diehl, D. Yan, C. Zambaldi, P. Shanthraj, F. Roters, D. Raabe, Integrated experimental–simulation analysis of stress and strain partitioning in multiphase alloys, Acta Mater. 81 (2014) 386–400.

DOI: 10.1016/j.actamat.2014.07.071

Google Scholar

[11] M.I. Latypov, S. Shin, B.C. De Cooman, H.S. Kim, Micromechanical finite element analysis of strain partitioning in multiphase medium manganese TWIP+TRIP steel, Acta Mater. 108 (2016) 219–228.

DOI: 10.1016/j.actamat.2016.02.001

Google Scholar

[12] P.J. Gibbs, B.C. De Cooman, D.W. Brown, B. Clausen, J.G. Schroth, M.J. Merwin, D.K. Matlock, Strain partitioning in ultra-fine grained medium-manganese transformation induced plasticity steel, Mater. Sci. Eng. A. 609 (2014) 323–333.

DOI: 10.1016/j.msea.2014.03.120

Google Scholar

[13] J. Han, Y.-K. Lee, The effects of the heating rate on the reverse transformation mechanism and the phase stability of reverted austenite in medium Mn steels, Acta Mater. 67 (2014) 354–361.

DOI: 10.1016/j.actamat.2013.12.038

Google Scholar

[14] S. Lee, W. Woo, B.C. de Cooman, Analysis of the Tensile Behavior of 12 pct Mn Multi-phase (α + γ) TWIP + TRIP Steel by Neutron Diffraction, Metall. Mater. Trans. A. 47 (2016) 2125–2140.

DOI: 10.1007/s11661-016-3407-9

Google Scholar

[15] M. Zhang, L. Li, J. Ding, Q. Wu, Y.-D. Wang, J. Almer, F. Guo, Y. Ren, Temperature-dependent micromechanical behavior of medium-Mn transformation-induced-plasticity steel studied by in situ synchrotron X-ray diffraction, Acta Mater. 141 (2017) 294–303.

DOI: 10.1016/j.actamat.2017.09.030

Google Scholar

[16] S.L. Wong, M. Madivala, U. Prahl, F. Roters, D. Raabe, A crystal plasticity model for twinning- and transformation-induced plasticity, Acta Mater. 118 (2016) 140–151.

DOI: 10.1016/j.actamat.2016.07.032

Google Scholar

[17] C.C. Tasan, J.P.M. Hoefnagels, M.G.D. Geers, Microstructural banding effects clarified through micrographic digital image correlation, Scr. Mater. 62 (2010) 835–838.

DOI: 10.1016/j.scriptamat.2010.02.014

Google Scholar

[18] D. Yan, C.C. Tasan, D. Raabe, High resolution in situ mapping of microstrain and microstructure evolution reveals damage resistance criteria in dual phase steels, Acta Mater. 96 (2015) 399–409.

DOI: 10.1016/j.actamat.2015.05.038

Google Scholar

[19] L. Allais, M. Bornert, T. Bretheau, D. Caldemaison, Experimental characterization of the local strain field in a heterogeneous elastoplastic material, Acta Metall. Mater. 42 (1994) 3865–3880.

DOI: 10.1016/0956-7151(94)90452-9

Google Scholar

[20] Z. Zhao, M. Ramesh, D. Raabe, A.M. Cuitiño, R. Radovitzky, Investigation of three-dimensional aspects of grain-scale plastic surface deformation of an aluminum oligocrystal, Int. J. Plast. 24 (2008) 2278–2297.

DOI: 10.1016/j.ijplas.2008.01.002

Google Scholar

[21] D. Raabe, M. Sachtleber, Z. Zhao, F. Roters, S. Zaefferer, Micromechanical and macromechanical effects in grain scale polycrystal plasticity experimentation and simulation, Acta Mater. 49 (2001) 3433–3441.

DOI: 10.1016/s1359-6454(01)00242-7

Google Scholar

[22] J. Han, S.-J. Lee, J.-G. Jung, Y.-K. Lee, The effects of the initial martensite microstructure on the microstructure and tensile properties of intercritically annealed Fe–9Mn–0.05C steel, Acta Mater. 78 (2014) 369–377.

DOI: 10.1016/j.actamat.2014.07.005

Google Scholar

[23] G.I. Taylor, Plastic strain in metals, Plast. Strain Met. (1938) 307–324.

Google Scholar

[24] J.P.M. Hoefnagels, C. Du, M.G.D. Geers, Boundary Mechanics in Lath Martensite, Studied by Uni-Axial Micro-Tensile Tests, in: Micro Nanomechanics Vol. 5, Springer, Cham, 2017: p.21–25.

DOI: 10.1007/978-3-319-42228-2_4

Google Scholar

[25] S. Morito, K. Oh-ishi, K. Hono, T. Ohba, Carbon Enrichment in Retained Austenite Films in Low Carbon Lath Martensite Steel, ISIJ Int. 51 (2011) 1200–1202.

DOI: 10.2355/isijinternational.51.1200

Google Scholar

[26] F. Maresca, V.G. Kouznetsova, M.G.D. Geers, On the role of interlath retained austenite in the deformation of lath martensite, Model. Simul. Mater. Sci. Eng. 22 (2014) 045011.

DOI: 10.1088/0965-0393/22/4/045011

Google Scholar

[27] K. Steineder, D. Krizan, R. Schneider, C. Béal, C. Sommitsch, On the microstructural characteristics influencing the yielding behavior of ultra-fine grained medium-Mn steels, Acta Mater. 139 (2017) 39–50.

DOI: 10.1016/j.actamat.2017.07.056

Google Scholar

[28] A. Saeed-Akbari, J. Imlau, U. Prahl, W. Bleck, Derivation and Variation in Composition-Dependent Stacking Fault Energy Maps Based on Subregular Solution Model in High-Manganese Steels, Metall. Mater. Trans. A. 40 (2009) 3076–3090.

DOI: 10.1007/s11661-009-0050-8

Google Scholar