[1]
W.A. Curtin, B.W. Sheldon,CNT-reinforced ceramics and metals. Mater. Today, 7 (2004) 44-49.
DOI: 10.1016/s1369-7021(04)00508-5
Google Scholar
[2]
V.N. Popov,Carbon nanotubes: properties and application. Mater. Sci. Eng., R, 43 (2004) 61-102.
Google Scholar
[3]
B. Chen, K. Kondoh, H. Imai, et al.,Simultaneously enhancing strength and ductility of carbon nanotube/aluminum composites by improving bonding conditions. Scripta Mater., 113 (2016) 158-162.
DOI: 10.1016/j.scriptamat.2015.11.011
Google Scholar
[4]
A. Esawi, K. Morsi, A. Sayed, et al.,Effect of carbon nanotube (CNT) content on the mechanical properties of CNT-reinforced aluminium composites. Compos. Sci. Technol., 70 (2010) 2237-2241.
DOI: 10.1016/j.compscitech.2010.05.004
Google Scholar
[5]
L. Jiang, Z. Li, G. Fan, et al.,A flake powder metallurgy approach to Al2O3/Al biomimetic nanolaminated composites with enhanced ductility. Scripta Mater., 65 (2011) 412-415.
DOI: 10.1016/j.scriptamat.2011.05.022
Google Scholar
[6]
P. Podsiadlo, S. Paternel, J.-M. Rouillard, et al.,Layer-by-layer assembly of nacre-like nanostructured composites with antimicrobial properties. Langmuir, 21 (2005) 11915-11921.
DOI: 10.1021/la051284+
Google Scholar
[7]
L. Jiang, Z. Li, G. Fan, et al.,Strong and ductile carbon nanotube/aluminum bulk nanolaminated composites with two-dimensional alignment of carbon nanotubes. Scripta Mater., 66 (2012) 331-334.
DOI: 10.1016/j.scriptamat.2011.11.023
Google Scholar
[8]
R. Xu, Z. Tan, D. Xiong, et al.,Balanced strength and ductility in CNT/Al composites achieved by flake powder metallurgy via shift-speed ball milling. Composites Part A, 96 (2017) 57-66.
DOI: 10.1016/j.compositesa.2017.02.017
Google Scholar
[9]
Z. Li, Q. Guo, Z. Li, et al.,Enhanced mechanical properties of graphene (reduced graphene oxide)/aluminum composites with a bioinspired nanolaminated structure. Nano Lett., 15 (2015) 8077-8083.
DOI: 10.1021/acs.nanolett.5b03492
Google Scholar
[10]
B. Chen, J. Shen, X. Ye, et al.,Solid-state interfacial reaction and load transfer efficiency in carbon nanotubes (CNTs)-reinforced aluminum matrix composites. Carbon, 114 (2017) 198-208.
DOI: 10.1016/j.carbon.2016.12.013
Google Scholar
[11]
R. Raoelison, C. Verdy, H. Liao,Cold gas dynamic spray additive manufacturing today: Deposit possibilities, technological solutions and viable applications. Mater. Des., 133 (2017) 266-287.
DOI: 10.1016/j.matdes.2017.07.067
Google Scholar
[12]
H. Assadi, H. Kreye, F. Gärtner, et al.,Cold spraying–a materials perspective. Acta Mater., 116 (2016) 382-407.
DOI: 10.1016/j.actamat.2016.06.034
Google Scholar
[13]
X. Wang, B. Zhang, J. Lv, et al.,Investigation on the Clogging Behavior and Additional Wall Cooling for the Axial-Injection Cold Spray Nozzle. J. Therm. Spray Technol., 24 (2015) 696-701.
DOI: 10.1007/s11666-015-0227-1
Google Scholar
[14]
R. George, K. Kashyap, R. Rahul, et al.,Strengthening in carbon nanotube/aluminium (CNT/Al) composites. Scripta Mater., 53 (2005) 1159-1163.
DOI: 10.1016/j.scriptamat.2005.07.022
Google Scholar