[1]
A. Lanzotti, D.M. Del Giudice, A. Lepore, G. Staiano, M. Martorelli, On the geometric accuracy of RepRap open-source three-dimensional printer, J. Mech. Des. 137 (2015) 101703-1 -101703-8.
DOI: 10.1115/1.4031298
Google Scholar
[2]
M.K. Thompson, G. Moroni, T. Vaneker, G. Fadel, R.I. Campbell, I. Gibson, et al., Design for Additive Manufacturing: Trends, opportunities, considerations, and constraints, CIRP Ann. Manuf. Technol. 65 (2016) 737–760.
DOI: 10.1016/j.cirp.2016.05.004
Google Scholar
[3]
M. Martorelli, S. Maietta, A. Gloria, R. De Santis, E. Pei, A. Lanzotti, Design and Analysis of 3D Customized Models of a Human Mandible, Procedia CIRP. 49 (2016) 199–202.
DOI: 10.1016/j.procir.2015.11.016
Google Scholar
[4]
S. Maietta, T. Russo, R. De Santis, D. Ronca, F. Riccardi, M. Catauro, M. Martorelli, A. Gloria, Further Theoretical Insight into the Mechanical Properties of Polycaprolactone Loaded with Organic–Inorganic Hybrid Fillers. Materials. 2 (2018) 312.
DOI: 10.3390/ma11020312
Google Scholar
[5]
P. Ausiello, S. Ciaramella, F. Garcia-Godoy, A. Gloria, A. Lanzotti, S. Maietta, M. Martorelli, The effects of cavity-margin-angles and bolus stiffness on the mechanical behavior of indirect resin composite class II restorations, Dent. Mater. J. 33 (2017) e39-e47.
DOI: 10.1016/j.dental.2016.11.002
Google Scholar
[6]
F. Caputo, A. De Luca, A. Greco, S. Maietta, A. Marro, A. Apicella, Investigation on the static and dynamic structural behaviours of a regional aircraft main landing gear by a new numerical methodology. Frattura Integr. Strutt. 12 (2018) 191-204.
DOI: 10.3221/igf-esis.43.15
Google Scholar
[7]
E. Vezzetti, D. Speranza, F. Marcolin, G. Fracastoro, Diagnosing cleft lip pathology in 3D ultrasound: A landmarking-based approach. Image Anal. Stereol. 35 (2015) 53-65.
DOI: 10.5566/ias.1339
Google Scholar
[8]
A. Borzacchiello, A. Gloria, L. Mayol, S. Dickinson, S. Miot, I. Martin, L. Ambrosio, Natural/synthetic porous scaffold designs and properties for fibro-cartilaginous tissue engineering. J Bioact. Compat. Polym. 26 (2011) 437-451.
DOI: 10.1177/0883911511420149
Google Scholar
[9]
C. Giordano, D. Albani, A. Gloria, M. Tunesi, S. Batelli, T. Russo,G. Forloni, L. Ambrosio, A. Cigada, Multidisciplinary perspectives for Alzheimer's and Parkinson's diseases: hydrogels for protein delivery and cell-based drug delivery as therapeutic strategies. Int. J Artif. Organs. 12 (2009) 836-50.
DOI: 10.1177/039139880903201202
Google Scholar
[10]
T. R. Marchesi, R.D. Lahuerta, E.C.N. Silva, M.S. Tsuzuki, T. C. Marttins, A. Barari, I. Wood, Topologically Optimized Diesel Engine Support Manufactured with Additive Manufacturing, IFAC-PapersOnLine. 3 (2015) 2333-2338.
DOI: 10.1016/j.ifacol.2015.06.436
Google Scholar
[11]
S.J. Hollister, Porous scaffold design for tissue engineering. Nat. Mater. 4 (2005) 518-524.
Google Scholar
[12]
K. W.Ng, D. W. Hutmacher, J.T. Schantz, C.S. Ng, H.P. Too, T.C. Lim, T.T. Phan, S.H. Teoh, Evaluation of ultra-thin poly(ε-caprolactone) films for tissue-engineered skin, Tissue Eng. 7 (2001) 441-455.
DOI: 10.1089/10763270152436490
Google Scholar
[13]
L. Moroni, J. R. de Wijn, C. A. van Blitterswijk, Three-dimensional fiber-deposited PEOT/PBT copolymer scaffolds for tissue engineering: influence of porosity, molecular network mesh size and swelling in aqueousmedia on dynamic mechanical properties. J. Biomed. Mater.Res. A. 75 (2005) 957–965.
DOI: 10.1002/jbm.a.30499
Google Scholar
[14]
L. Moroni, J. R. de Wijn, C. A. van Blitterswijk, 3D fiber-deposited scaffolds for tissue engineering: influence of pores geometry and architecture on dynamic mechanical properties. Biomaterials. 27 (2006) 974–985.
DOI: 10.1016/j.biomaterials.2005.07.023
Google Scholar
[15]
P. Bartolo, M. Domingos, A. Gloria, J. Ciurana, BioCell Printing: Integrated automated assembly system for tissue engineering constructs. CIRP Ann. Manuf. Technol. 60 (2011) 271-274.
DOI: 10.1016/j.cirp.2011.03.116
Google Scholar
[16]
T. Patrício, M. Domingos, A. Gloria, U. D'Amora, J. F. Coelho, P. J. Bártolo, Fabrication and characterisation of PCL and PCL/PLA scaffolds for tissue engineering. Rapid Prototyping Journal. 2 (2014) 145-156.
DOI: 10.1108/rpj-04-2012-0037
Google Scholar
[17]
R. De Santis, A. Russo, A. Gloria, U. D'Amora, T. Russo, S. Panseri, M. Sandri, A. Tampieri, M. Marcacci, V.A. Dediu, C.J. Wilde, Towards the Design of 3D Fiber-Deposited Poly(e-caprolactone)/Iron-Doped Hydroxyapatite Nanocomposite Magnetic Scaffolds for Bone Regeneration, J. Biomed. Nanotechnol. 11 (2015) 1236–1246.
DOI: 10.1166/jbn.2015.2065
Google Scholar
[18]
A. Gloria, F. Causa, T. Russo, E. Battista, R. Della Moglie, S. Zeppetelli, R. De Santis, P.A. Netti, L. Ambrosio, Three-dimensional poly(ε-caprolactone) bioactive scaffolds with controlled structural and surface properties. Biomacromolecules. 13 (2012) 3510-3521.
DOI: 10.1021/bm300818y
Google Scholar
[19]
M. Domingos, F. Intranuovo, T. Russo, R. De Santis, A. Gloria, L. Ambrosio, J. Ciurana, P. Bartolo, The first systematic analysis of 3D rapid prototyped poly(ε-caprolactone) scaffolds manufactured through BioCell printing: the effect of pore size and geometry on compressive mechanical behaviour and in vitro hMSC viability. Biofabrication. 4 (2013) 1-13.
DOI: 10.1088/1758-5082/5/4/045004
Google Scholar
[20]
M. Domingos, A. Gloria, J. Coelho, P. Bartolo, J. Ciurana, Three-dimensional printed bone scaffolds: The role of nano/micro-hydroxyapatite particles on the adhesion and differentiation of human mesenchymal stem cells. Proc. Inst. Mech. Eng. H. 231 (2017) 555-564.
DOI: 10.1177/0954411916680236
Google Scholar
[21]
M. Domingos, F. Chiellini, A. Gloria, L. Ambrosio, P. Bartolo, E. Chiellini, Effect of process parameters on the morphological and mechanical properties of 3D bioextruded poly(ε-caprolactone) scaffolds. Rapid Prototyping Journal. 18 (2012) 56–67.
DOI: 10.1108/13552541211193502
Google Scholar