Design of Additively Manufactured Lattice Structures for Tissue Regeneration

Article Preview

Abstract:

Additive Manufacturing technologies allow for the direct fabrication of lightweight structures with improved properties. In this context, Fused Deposition Modelling (FDM) has also been considered to design 3D multifunctional scaffolds with complex morphology, tailored biological, mechanical and mass transport properties. As an example, poly (ε-caprolactone) (PCL), surface-modified PCL and PCL-based nanocomposite scaffolds were fabricated and analysed. The effects of structural and morphological features (i.e., sequence of stacking, fiber spacing distance, pore size and geometry), surface modification and nanoparticles on the in vitro biological and mechanical performances were investigated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2154-2159

Citation:

Online since:

December 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Lanzotti, D.M. Del Giudice, A. Lepore, G. Staiano, M. Martorelli, On the geometric accuracy of RepRap open-source three-dimensional printer, J. Mech. Des. 137 (2015) 101703-1 -101703-8.

DOI: 10.1115/1.4031298

Google Scholar

[2] M.K. Thompson, G. Moroni, T. Vaneker, G. Fadel, R.I. Campbell, I. Gibson, et al., Design for Additive Manufacturing: Trends, opportunities, considerations, and constraints, CIRP Ann. Manuf. Technol. 65 (2016) 737–760.

DOI: 10.1016/j.cirp.2016.05.004

Google Scholar

[3] M. Martorelli, S. Maietta, A. Gloria, R. De Santis, E. Pei, A. Lanzotti, Design and Analysis of 3D Customized Models of a Human Mandible, Procedia CIRP. 49 (2016) 199–202.

DOI: 10.1016/j.procir.2015.11.016

Google Scholar

[4] S. Maietta, T. Russo, R. De Santis, D. Ronca, F. Riccardi, M. Catauro, M. Martorelli, A. Gloria, Further Theoretical Insight into the Mechanical Properties of Polycaprolactone Loaded with Organic–Inorganic Hybrid Fillers. Materials. 2 (2018) 312.

DOI: 10.3390/ma11020312

Google Scholar

[5] P. Ausiello, S. Ciaramella, F. Garcia-Godoy, A. Gloria, A. Lanzotti, S. Maietta, M. Martorelli, The effects of cavity-margin-angles and bolus stiffness on the mechanical behavior of indirect resin composite class II restorations, Dent. Mater. J.  33 (2017) e39-e47.

DOI: 10.1016/j.dental.2016.11.002

Google Scholar

[6] F. Caputo, A. De Luca, A. Greco, S. Maietta, A. Marro, A. Apicella, Investigation on the static and dynamic structural behaviours of a regional aircraft main landing gear by a new numerical methodology. Frattura Integr. Strutt. 12 (2018) 191-204.

DOI: 10.3221/igf-esis.43.15

Google Scholar

[7] E. Vezzetti, D. Speranza, F. Marcolin, G. Fracastoro, Diagnosing cleft lip pathology in 3D ultrasound: A landmarking-based approach. Image Anal. Stereol. 35 (2015) 53-65.

DOI: 10.5566/ias.1339

Google Scholar

[8] A. Borzacchiello, A. Gloria, L. Mayol, S. Dickinson, S. Miot, I. Martin, L. Ambrosio, Natural/synthetic porous scaffold designs and properties for fibro-cartilaginous tissue engineering. J Bioact. Compat. Polym. 26 (2011) 437-451.

DOI: 10.1177/0883911511420149

Google Scholar

[9] C. Giordano, D. Albani, A. Gloria, M. Tunesi, S. Batelli, T. Russo,G. Forloni, L. Ambrosio, A. Cigada, Multidisciplinary perspectives for Alzheimer's and Parkinson's diseases: hydrogels for protein delivery and cell-based drug delivery as therapeutic strategies. Int. J Artif. Organs. 12 (2009) 836-50.

DOI: 10.1177/039139880903201202

Google Scholar

[10] T. R. Marchesi, R.D. Lahuerta, E.C.N. Silva, M.S. Tsuzuki, T. C. Marttins, A. Barari, I. Wood, Topologically Optimized Diesel Engine Support Manufactured with Additive Manufacturing, IFAC-PapersOnLine. 3 (2015) 2333-2338.

DOI: 10.1016/j.ifacol.2015.06.436

Google Scholar

[11] S.J. Hollister, Porous scaffold design for tissue engineering. Nat. Mater. 4 (2005) 518-524.

Google Scholar

[12] K. W.Ng, D. W. Hutmacher, J.T. Schantz, C.S. Ng, H.P. Too, T.C. Lim, T.T. Phan, S.H. Teoh, Evaluation of ultra-thin poly(ε-caprolactone) films for tissue-engineered skin, Tissue Eng. 7 (2001) 441-455.

DOI: 10.1089/10763270152436490

Google Scholar

[13] L. Moroni, J. R. de Wijn, C. A. van Blitterswijk, Three-dimensional fiber-deposited PEOT/PBT copolymer scaffolds for tissue engineering: influence of porosity, molecular network mesh size and swelling in aqueousmedia on dynamic mechanical properties. J. Biomed. Mater.Res. A. 75 (2005) 957–965.

DOI: 10.1002/jbm.a.30499

Google Scholar

[14] L. Moroni, J. R. de Wijn, C. A. van Blitterswijk, 3D fiber-deposited scaffolds for tissue engineering: influence of pores geometry and architecture on dynamic mechanical properties. Biomaterials. 27 (2006) 974–985.

DOI: 10.1016/j.biomaterials.2005.07.023

Google Scholar

[15] P. Bartolo, M. Domingos, A. Gloria, J. Ciurana, BioCell Printing: Integrated automated assembly system for tissue engineering constructs. CIRP Ann. Manuf. Technol. 60 (2011) 271-274.

DOI: 10.1016/j.cirp.2011.03.116

Google Scholar

[16] T. Patrício, M. Domingos, A. Gloria, U. D'Amora, J. F. Coelho, P. J. Bártolo, Fabrication and characterisation of PCL and PCL/PLA scaffolds for tissue engineering. Rapid Prototyping Journal. 2 (2014) 145-156.

DOI: 10.1108/rpj-04-2012-0037

Google Scholar

[17] R. De Santis, A. Russo, A. Gloria, U. D'Amora, T. Russo, S. Panseri, M. Sandri, A. Tampieri, M. Marcacci, V.A. Dediu, C.J. Wilde, Towards the Design of 3D Fiber-Deposited Poly(e-caprolactone)/Iron-Doped Hydroxyapatite Nanocomposite Magnetic Scaffolds for Bone Regeneration, J. Biomed. Nanotechnol. 11 (2015) 1236–1246.

DOI: 10.1166/jbn.2015.2065

Google Scholar

[18] A. Gloria, F. Causa, T. Russo, E. Battista, R. Della Moglie, S. Zeppetelli, R. De Santis, P.A. Netti, L. Ambrosio, Three-dimensional poly(ε-caprolactone) bioactive scaffolds with controlled structural and surface properties. Biomacromolecules. 13 (2012) 3510-3521.

DOI: 10.1021/bm300818y

Google Scholar

[19] M. Domingos, F. Intranuovo, T. Russo, R. De Santis, A. Gloria, L. Ambrosio, J. Ciurana, P. Bartolo, The first systematic analysis of 3D rapid prototyped poly(ε-caprolactone) scaffolds manufactured through BioCell printing: the effect of pore size and geometry on compressive mechanical behaviour and in vitro hMSC viability. Biofabrication. 4 (2013) 1-13.

DOI: 10.1088/1758-5082/5/4/045004

Google Scholar

[20] M. Domingos, A. Gloria, J. Coelho, P. Bartolo, J. Ciurana, Three-dimensional printed bone scaffolds: The role of nano/micro-hydroxyapatite particles on the adhesion and differentiation of human mesenchymal stem cells. Proc. Inst. Mech. Eng. H. 231 (2017) 555-564.

DOI: 10.1177/0954411916680236

Google Scholar

[21] M. Domingos, F. Chiellini, A. Gloria, L. Ambrosio, P. Bartolo, E. Chiellini, Effect of process parameters on the morphological and mechanical properties of 3D bioextruded poly(ε-caprolactone) scaffolds. Rapid Prototyping Journal. 18 (2012) 56–67.

DOI: 10.1108/13552541211193502

Google Scholar