[1]
R. Langer and J.P. Vacanti, Tissue engineering: the challenges ahead. Sci Am 280(4) (1999) 8689.
Google Scholar
[2]
C.A.V. Blitterswijk, L. Moroni, J. Rouwkema, R. Siddappa, and J. Sohier, Tissue EngineeringAn Introduction. Tissue Engineering. Burlington: Academic Press, 2008, p. xii.
DOI: 10.1016/b978-0-12-370869-4.00024-0
Google Scholar
[3]
L.G. Griffit, G. Naughto, Tissue engineering - current challenges and expanding opportunities, Science 295(5557) (2002) 1009-14.
Google Scholar
[4]
M. Nikkhah, N. Eshak, Directed endothelial cell morphogenesis in micropatterned gelatin methacrylate hydrogels, Biomaterials 33 (2012) 9009-9018.
DOI: 10.1016/j.biomaterials.2012.08.068
Google Scholar
[5]
J.P. Temple, D.L. Hutton, B.P. Hung, P.Y. Huri, C.A. Cook, R. Kondragunta, X. Jia and W.L. Grayson, Engineering anatomically shaped vascularized bone grafts with hASCs and 3D-printed PCL scaffolds. J Biomed Mater Res Res A 102 (2014) 4317.
DOI: 10.1002/jbm.a.35107
Google Scholar
[6]
J. Leor, Y. Amsalem, Cells, scaffolds, and molecules for myocardial tissue engineering, Pharmacol. amp; Therap.105(2) (2005) 151-163.
DOI: 10.1016/j.pharmthera.2004.10.003
Google Scholar
[7]
N.A. Sears, D.R. Seshadri, P.S. Dhavalikar, and E. Cosgriff-Hernandez, Review of ThreeDimensional Printing in Tissue Engineering Tissue Eng.: Part B 22(4) (2016) 298.
DOI: 10.1089/ten.teb.2015.0464
Google Scholar
[8]
S.Q. Liu, R. Tay, Synthetic hydrogels for controlled stem cell differentiation, Soft Matter 6(1) (2010) 67-81.
Google Scholar
[9]
P. Prosposito, S. Melino, M. Ciocci, R. Francini, F. Mochi, F. De Matteis, P. Di Nardo,S. Ksenzov, S. Schrader, M. Casalboni, Photolithography of 3D scaffolds for Artificial Tissue Materials Science Forum 879 (2017) 1519-1523.
DOI: 10.4028/www.scientific.net/msf.879.1519
Google Scholar
[10]
S.N. Bhatia and C.S. Chen, Tissue engineering at the micro-scale. Biomed Microdevices 2 (1999) 131-144.
Google Scholar
[11]
F. De Matteis, F. Fanicchia, F.R. Lamastra, G. Stracci, R. De Angelis, P. Prosposito, F. Nanni, M. Casalboni, Nonlinear optical materials by electrospinning technique J.Appl.Pol. Scie., 131.20 (2014) 40913.
DOI: 10.1002/app.40913
Google Scholar
[12]
YE Choonara, LC du Toit, P Kumar, PP Kondiah, V Pillay, 3D-printing and the effect on medical costs: a new era? Expert Rev Pharmacoecon Outcomes Res. 16(1) (2016) 23-32.
DOI: 10.1586/14737167.2016.1138860
Google Scholar
[13]
M. Ciocci, F. Mochi, F. Carotenuto, E. Di Giovanni, P. Prosposito, R. Francini, F. De Matteis, I. Reshetov, M. Casalboni, S. Melino, P. Di Nardo, Scaffold-in-Scaffold Potential to Induce Growth and Differentiation of Cardiac Progenitor Cells, Stem Cell Dev. 26(19) (2017) 1438-1447.
DOI: 10.1089/scd.2017.0051
Google Scholar
[14]
A. Selimis, V. Mironov, M. Farsari, Direct laser writing: Principles and materials for scaffold 3D printing Microel. Eng. 132 (2015) 83-89.
DOI: 10.1016/j.mee.2014.10.001
Google Scholar
[15]
A. Ovsianikov, V. Mironov, J. Stampfl, R. Liska, Engineering 3D cell-culture matrices: multiphoton processing technologies for biological and tissue engineering applications Expert Rev. Med. Dev. 9(6) (2012) 613-633.
DOI: 10.1586/erd.12.48
Google Scholar
[16]
A.E. Siegman, Lasers University Science Books (1986) ISBN-10: 0935702113.
Google Scholar
[17]
F. Mochi, P. Prosposito, R. Francini, F. De Matteis, S. Melino, M. Ciocci, P. Di Nardo, S. Ksenzov, S. Schrader, M. Casalboni, Advanced biocompatible photolithographic scaffolds for tissue engineering IET Conference Proceedings, (2016) 1-4.
DOI: 10.1049/cp.2016.0944
Google Scholar
[18]
M.H. Teiten, S. Eifes, Curcumin - the paradigm of a multi-target natural compound with applications in cancer prevention and treatment, Toxins 2.1 (2010) 128-162.
DOI: 10.3390/toxins2010128
Google Scholar