One Photon 3D Polymerization via Direct Laser Writing

Article Preview

Abstract:

A way to produce 3D scaffold is via laser stereolithography. We propose a method of direct laser writing for micro-stereolithography in which we use as light source a low power blue diode laser with a wavelength of 448nm. The material chosen for scaffold fabrication is a polyethylene glycol diacrylate (PEGDA) solution at concentration of 75% in ethanol. We chose a short PEGDA molecule with a molecular weight of 575 g/mol, in order to obtain a better control over the polymerization. We used Irgacure 819 as photoinitiator to initiate the photopolymerization. The absorption of the Irgacure 819 almost drops to zero at the excitation wavelength, so the efficiency of the photopolymerization is strongly reduced. Since the intensity of the light reduces by a factor 5 within a penetration depth, equal to the depth of focus of the optical system, we achieve a fine control of the vertical and lateral photopolymerization of the solution. The threshold for effective polymerization is not reached outside that region.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2142-2147

Citation:

Online since:

December 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Langer and J.P. Vacanti, Tissue engineering: the challenges ahead. Sci Am 280(4) (1999) 8689.

Google Scholar

[2] C.A.V. Blitterswijk, L. Moroni, J. Rouwkema, R. Siddappa, and J. Sohier, Tissue EngineeringAn Introduction. Tissue Engineering. Burlington: Academic Press, 2008, p. xii.

DOI: 10.1016/b978-0-12-370869-4.00024-0

Google Scholar

[3] L.G. Griffit, G. Naughto, Tissue engineering - current challenges and expanding opportunities, Science 295(5557) (2002) 1009-14.

Google Scholar

[4] M. Nikkhah, N. Eshak, Directed endothelial cell morphogenesis in micropatterned gelatin methacrylate hydrogels, Biomaterials 33 (2012) 9009-9018.

DOI: 10.1016/j.biomaterials.2012.08.068

Google Scholar

[5] J.P. Temple, D.L. Hutton, B.P. Hung, P.Y. Huri, C.A. Cook, R. Kondragunta, X. Jia and W.L. Grayson, Engineering anatomically shaped vascularized bone grafts with hASCs and 3D-printed PCL scaffolds. J Biomed Mater Res Res A 102 (2014) 4317.

DOI: 10.1002/jbm.a.35107

Google Scholar

[6] J. Leor, Y. Amsalem, Cells, scaffolds, and molecules for myocardial tissue engineering, Pharmacol. amp; Therap.105(2) (2005) 151-163.

DOI: 10.1016/j.pharmthera.2004.10.003

Google Scholar

[7] N.A. Sears, D.R. Seshadri, P.S. Dhavalikar, and E. Cosgriff-Hernandez, Review of ThreeDimensional Printing in Tissue Engineering Tissue Eng.: Part B 22(4) (2016) 298.

DOI: 10.1089/ten.teb.2015.0464

Google Scholar

[8] S.Q. Liu, R. Tay, Synthetic hydrogels for controlled stem cell differentiation, Soft Matter 6(1) (2010) 67-81.

Google Scholar

[9] P. Prosposito, S. Melino, M. Ciocci, R. Francini, F. Mochi, F. De Matteis, P. Di Nardo,S. Ksenzov, S. Schrader, M. Casalboni, Photolithography of 3D scaffolds for Artificial Tissue Materials Science Forum 879 (2017) 1519-1523.

DOI: 10.4028/www.scientific.net/msf.879.1519

Google Scholar

[10] S.N. Bhatia and C.S. Chen, Tissue engineering at the micro-scale. Biomed Microdevices 2 (1999) 131-144.

Google Scholar

[11] F. De Matteis, F. Fanicchia, F.R. Lamastra, G. Stracci, R. De Angelis, P. Prosposito, F. Nanni, M. Casalboni, Nonlinear optical materials by electrospinning technique J.Appl.Pol. Scie., 131.20 (2014) 40913.

DOI: 10.1002/app.40913

Google Scholar

[12] YE Choonara, LC du Toit, P Kumar, PP Kondiah, V Pillay, 3D-printing and the effect on medical costs: a new era? Expert Rev Pharmacoecon Outcomes Res. 16(1) (2016) 23-32.

DOI: 10.1586/14737167.2016.1138860

Google Scholar

[13] M. Ciocci, F. Mochi, F. Carotenuto, E. Di Giovanni, P. Prosposito, R. Francini, F. De Matteis, I. Reshetov, M. Casalboni, S. Melino, P. Di Nardo, Scaffold-in-Scaffold Potential to Induce Growth and Differentiation of Cardiac Progenitor Cells, Stem Cell Dev. 26(19) (2017) 1438-1447.

DOI: 10.1089/scd.2017.0051

Google Scholar

[14] A. Selimis, V. Mironov, M. Farsari, Direct laser writing: Principles and materials for scaffold 3D printing Microel. Eng. 132 (2015) 83-89.

DOI: 10.1016/j.mee.2014.10.001

Google Scholar

[15] A. Ovsianikov, V. Mironov, J. Stampfl, R. Liska, Engineering 3D cell-culture matrices: multiphoton processing technologies for biological and tissue engineering applications Expert Rev. Med. Dev. 9(6) (2012) 613-633.

DOI: 10.1586/erd.12.48

Google Scholar

[16] A.E. Siegman, Lasers University Science Books (1986) ISBN-10: 0935702113.

Google Scholar

[17] F. Mochi, P. Prosposito, R. Francini, F. De Matteis, S. Melino, M. Ciocci, P. Di Nardo, S. Ksenzov, S. Schrader, M. Casalboni, Advanced biocompatible photolithographic scaffolds for tissue engineering IET Conference Proceedings, (2016) 1-4.

DOI: 10.1049/cp.2016.0944

Google Scholar

[18] M.H. Teiten, S. Eifes, Curcumin - the paradigm of a multi-target natural compound with applications in cancer prevention and treatment, Toxins 2.1 (2010) 128-162.

DOI: 10.3390/toxins2010128

Google Scholar