[1]
A. Fujishima & K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature 238 (1972) 37–38.
DOI: 10.1038/238037a0
Google Scholar
[2]
Q. Yan, J. Yu, S.K. Suram, L. Zhou, A. Shinde, et al., Solar fuels photoanode materials discovery by integrating high-throughput theory and experiment, Proc. Natl. Acad. Sci. 114 (2017) 3040–3043.
DOI: 10.1073/pnas.1619940114
Google Scholar
[3]
Y. Qiu, W. Liu, W. Chen, G. Zhou, P.-C. Hsu, et al., Efficient solar-driven water splitting by nanocone BiVO4-perovskite tandem cells, Sci. Adv. 2 (2016) e1501764.
DOI: 10.1126/sciadv.1501764
Google Scholar
[4]
J.K. Cooper, S. Gul, F.M. Toma, L. Chen, Y.-S. Liu, et al., Indirect Bandgap and Optical Properties of Monoclinic Bismuth Vanadate, J. Phys. Chem. C 119 (2015) 2969–2974.
DOI: 10.1021/jp512169w
Google Scholar
[5]
B. Lamm, B.J. Trześniewski, H. Döscher, W.A. Smith & M. Stefik, Emerging Post-synthetic Improvements of BiVO4 Photoanodes for Solar Water Splitting, ACS Energy Lett. 3 (2017) 112–124.
DOI: 10.1021/acsenergylett.7b00834
Google Scholar
[6]
J.A. Seabold, K. Zhu & N.R. Neale, Efficient solar photoelectrolysis by nanoporous Mo:BiVO4 through controlled electron transport, Phys. Chem. Chem. Phys. 16 (2014) 1121–1131.
DOI: 10.1039/c3cp54356k
Google Scholar
[7]
A. Iwase, H. Kato & A. Kudo, A Simple Preparation Method of Visible-Light-Driven BiVO4 Photocatalysts From Oxide Starting Materials (Bi2O3 and V2O5) and Their Photocatalytic Activities, J. Sol. Energy Eng. 132 (2010) 021106.
DOI: 10.1115/1.4001172
Google Scholar
[8]
W. Sun, M. Xie, L. Jing, Y. Luan & H. Fu, Synthesis of large surface area nano-sized BiVO4 by an EDTA-modified hydrothermal process and its enhanced visible photocatalytic activity, J. Solid State Chem. 184 (2011) 3050–3054.
DOI: 10.1016/j.jssc.2011.09.013
Google Scholar
[9]
H.M. Pathan & C.D. Lokhande, Deposition of metal chalcogenide thin films by successive ionic layer adsorption and reaction (SILAR) method, Bull. Mater. Sci. 27 (2004) 85–111.
DOI: 10.1007/bf02708491
Google Scholar
[10]
F. Safari-Alamuti, J.R. Jennings, M.A. Hossain, L.Y.L. Yung & Q. Wang, Conformal growth of nanocrystalline CdX (X = S, Se) on mesoscopic NiO and their photoelectrochemical properties, Phys. Chem. Chem. Phys. 15 (2013) 4767–4774.
DOI: 10.1039/c3cp43613f
Google Scholar
[11]
G. Odling & N. Robertson, BiVO4-TiO2 Composite Photocatalysts for Dye Degradation Formed Using the SILAR Method, ChemPhysChem 17 (2016) 2872–2880.
DOI: 10.1002/cphc.201600443
Google Scholar
[12]
T. Stoll, G. Zafeiropoulos, I. Dogan, H. Genuit, R. Lavrijsen, et al., Visible-light-promoted gas-phase water splitting using porous WO3/BiVO4 photoanodes, Electrochem. commun. 82 (2017) 47–51.
DOI: 10.1016/j.elecom.2017.07.019
Google Scholar
[13]
W. Guo, D. Tang, O. Mabayoje, B.R. Wygant, P. Xiao, et al., A Simplified Successive Ionic Layer Adsorption and Reaction ( s-SILAR ) Method for Growth of Porous BiVO4 Thin Films for Photoelectrochemical Water Oxidation, 164 (2017) 119–125.
DOI: 10.1149/2.1321702jes
Google Scholar
[14]
M.W. Kanan & D.G. Nocera, In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+, Science 321 (2008) 1072–1075.
DOI: 10.1126/science.1162018
Google Scholar
[15]
S. Sodergren, A. Hagfeldt, J. Olsson & S.E. Lindquist, Theoretical Models for the Action Spectrum and the Current–Voltage Characteristics of Microporous Semiconductor Films in Photoelectrochemical Cells, J. Phys. Chem. 98 (1994) 5552–5556.
DOI: 10.1021/j100072a023
Google Scholar
[16]
J.R. Jennings, F. Li & Q. Wang, Reliable Determination of Electron Diffusion Length and Charge Separation Efficiency in Dye-Sensitized Solar Cells, J. Phys. Chem. C 114 (2010) 14665–14674.
DOI: 10.1021/jp105486k
Google Scholar
[17]
W.H. Leng, P.R.F. Barnes, M. Juozapavicius, B.C. O'Regan & J.R. Durrant, Electron Diffusion Length in Mesoporous Nanocrystalline TiO2 Photoelectrodes during Water Oxidation, J. Phys. Chem. Lett. 1 (2010) 967–972.
DOI: 10.1021/jz100051q
Google Scholar
[18]
S.L. Sim, Y.R. Liu, Y.W. Soon & J.R. Jennings, Surface Engineering of Metal Oxide Photoelectrodes for Improved Band Alignment in Solar Water Splitting Cells, Mater. Sci. Forum 879 (2016) 832–837.
DOI: 10.4028/www.scientific.net/msf.879.832
Google Scholar
[19]
C. Zachäus, F.F. Abdi, L.M. Peter & R. van de Krol, Photocurrent of BiVO4 is limited by surface recombination, not surface catalysis, Chem. Sci. 8 (2017) 3712–3719.
DOI: 10.1039/c7sc00363c
Google Scholar