Photoluminescence of (ZnO)0.82(InN)0.18 Films: Incident Light Angle Dependence

Article Preview

Abstract:

We have fabricated a new semiconducting material, (ZnO)x(InN)1-x (called ZION hereafter), which is a pseudo-binary alloy of wurtzite ZnO (band gap: 3.4 eV) and wurtzite InN (band gap: 0.7 eV). We have succeeded in fabricating epitaxial (ZnO)0.82(InN)0.18 films on ZnO templates by RF magnetron sputtering. XRD measurements show that the full width at half maximum of the rocking curves from (101) plane and (002) plane are significantly small of 0.11 ̊ and 0.16 ̊, respectively, indicating good in-plane and out-of-plane crystal alignment. High crystal quality of the films was also proved by deducing the defect density from XRD analysis showing that the edge type dislocation density is low of 8.2×108 cm-2. Furthermore, we observed room temperature photoluminescence from ZION films as a parameter of incident angle of He-Cd laser light. The results indicate that an emission peak of 2.79 eV is originated from ZION.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2099-2103

Citation:

Online since:

December 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.K. Gupta, K. Ghosh, R. Patel, P.K. Kahol, Mater. Sci. Eng. B 156 (2009) 1-5.

Google Scholar

[2] N. Ito, Y. Sato, P.K. Song, A. Kaijio, K. Inoue, Y. Shigesato, Tnin Solid Films 496 (2006) 99-103.

DOI: 10.1016/j.tsf.2005.08.257

Google Scholar

[3] Y. Zhang, S. Krishnamoorthy, F. Akyol, S. Bajaj, A.A. Allerman, M.W. Moseley, A.M. Armstrong, S. Rajan, Y. Zhang, S. Krishnamoorthy, F. Akyol, S. Bajaj, A.A. Allerman, M.W. Moseley, A.M. Armstrong, Appl. Phys. Lett. 110 (2017) 201102.

DOI: 10.1063/1.4983352

Google Scholar

[4] B. Reuters, M. Finken, A. Wille, B. Holländer, M. Heuken, H. Kalisch, A. Vescan, J. Appl. Phys. 52 (2016) 93524.

Google Scholar

[5] S.F. Chichibu, A. Uedono, T. Onuma, B.A. Haskell, A. Chakraborty, T. Koyama, P.T. Fini, S. Keller, S.P. Denbaars, J.S. Speck, U.K. Mishra, S. Nakamura, S. Yamaguchi, S. Kamiyama, H. Amano, I. Akasaki, J. Han, T. Sota, Nat. Mater. 5 (2006) 6-10.

DOI: 10.1038/nmat1726

Google Scholar

[6] T. Detchprohm, X. Li, P.D. Yoder, R.D. Dupuis, III-N Wide Bandgap Deep-Ultraviolet Lasers and Photodetectors, Semiconduct. Semimet. 96 (2017) 121-166.

DOI: 10.1016/bs.semsem.2016.09.001

Google Scholar

[7] M. Ueno, M. Yoshida, T. Mukai, M. Yamada, S. Nakamura, B. Baker, C. Lojka, Jpn. J. Appl. Phys. 34 (1995) L797-L799.

Google Scholar

[8] Z. Lin, H. Wang, S. Chen, Y. Lin, M. Yang, G. Li, B. Xu, IEEE T. Electron. Dev. 64 (2017) 472-480.

Google Scholar

[9] K. Lin, D. H. Kou, J. Mater. Sci.: Mater. Electron. 28 (2017) 43-51.

Google Scholar

[10] N. Itagaki, T. Iwasaki, M. Watanabe, T. Den, U.S. Patent No. 8274078 (2008).

Google Scholar

[11] K. Matsushima, T. Ide, D. Yamashita, H. Seo, K. Koga, M. Shiratani, N. Itagaki, MRS Adv. 1 (2016) 115.

Google Scholar

[12] K. Matsushima, M. Shiratani, N. Itagaki, Proc. IEEE-Nano (2016) 674.

Google Scholar

[13] K. Matsushima, T. Ide, K. Takeda, M. Hori, D. Yamashita, H. Seo, K. Koga, M. Shiratani, and N. Itagaki, IEEE Trans. Plasma Sci. 45 (2017) 323.

DOI: 10.1109/tps.2016.2632124

Google Scholar

[14] K. Matsushima, K. Iwasaki, N. Miyahara, D. Yamashita, H. Seo, K. Koga, M. Shiratani, N. Itagaki, MRS Adv. 2 (2017) 277.

DOI: 10.1557/adv.2016.625

Google Scholar

[15] N. Itagaki, K. Matsushima, D. Yamashita, H. Seo, K. Koga, M. Shiratani, Mater. Res. Express 1 (2014) 036405.

DOI: 10.1088/2053-1591/1/3/036405

Google Scholar

[16] K. Matsushima, R. Shimizu, T. Ide, D. Yamashita, H. Seo, K. Koga, M. Shiratani, N. Itagaki, Thin Solid Films 587 (2015) 106.

DOI: 10.1016/j.tsf.2015.01.012

Google Scholar

[17] N. Itagaki, K. Kuwahara, K. Nakahara, D. Yamashita, G. Uchida, K. Koga, M. Shiratani, Appl. Phys. Express 4 (2011) 011101.

DOI: 10.1143/apex.4.011101

Google Scholar

[18] K. Kuwahara, N. Itagaki, K. Nakahara, D. Yamashita, G. Uchida, K. Kamataki, K. Koga, M. Shiratani, Thin Solid Films 520 (2012) 4674.

DOI: 10.1016/j.tsf.2011.10.136

Google Scholar

[19] K. Matsushima, T. Hirose, K. Kuwahara, D. Yamashita, G. Uchida, H. Seo, K. Koga, M. Shiratani, N. Itagaki, Jpn. J. Appl. Phys. 52 (2013) 11NM06.

DOI: 10.7567/jjap.52.11nm06

Google Scholar

[20] N. Itagaki, K. Kuwahara, K. Matsushima, D. Yamashita, H. Seo, K. Koga, M. Shiratani, Opt. Eng. 53 (2014) 087109.

DOI: 10.1117/1.oe.53.8.087109

Google Scholar

[21] K. Iwasaki, K. Matsushima, D. Yamashita, H. Seo, K. Koga, M. Shiratani, N. Itagaki, MRS Adv. 2 (2017) 265.

Google Scholar

[22] M. Becker, A. Polity, P. J. Klar, Phys. Status Solidi, A, 215 (2018) 1700623.

Google Scholar

[23] T. Yamamoto, T. Shiosaki, A. Kawabata, J. Appl. Phys. 51 (1980) 3113.

Google Scholar

[24] A. Nahhas and H. K. K. Blachere, Appl. Phys. Lett. 78 (2001) 1511.

Google Scholar

[25] T. Nakamura, Y. Yamada, T. Kusumori, H. Minoura, H. Muto, Thin Solid Films 411 (2002) 60.

DOI: 10.1016/s0040-6090(02)00188-8

Google Scholar

[26] R. Chierchia, T. Bottcher, H. heinke, S. Einfeldt, S. Figge, D. Hommel, J. Appl. Phys. 93 (2003) 8918.

Google Scholar

[27] A. Janotti, C.G. Van de Walle, Phys. Rev. B 76 (2007) 165202.

Google Scholar

[28] M. Wang, Y. Zhou, Y. Zhang, E.J. Kim, S.H. Hahn, S.G. Seong, Appl. Phys. Lett. 100 (2012) 101906.

Google Scholar

[29] R.K. Biroju, P.K. Giri, J. Appl. Phys. 122 (2005) 044301.

Google Scholar

[30] G.Kaur, A. Mitra, K.L. Yadav, Prog. Nat. Sci. 25 (2015) 12-21.

Google Scholar