Synthesis of Fluorescent Ag Nanoclusters for Sensing and Imaging Applications

Article Preview

Abstract:

Metal nanoparticles have attracted more and more attention in the last years due to their unique chemical and physical properties which are very different from the metal bulk material. In particular, when the size of nanoparticles decreases below two nm, nanoparticles can be described as nanoclusters (NCs), and they present peculiar optical properties. The excited electrons in addition to specific absorption bands show also a bright luminescence related to the quantum size effect which produce discrete energy levels. Optical properties (absorption and fluorescence) of these NCs are widely used in many different applications in science and engineering, such as chemical sensors, fluorescent probes for bio imaging or in environmental issues. In the present study, we report on the synthesis of silver nanoclusters (AgNCs) in aqueous phase using silver nitrate as precursor salt and L-Glutathione (GSH) as stabilizer. AgNCs were characterized using absorption and fluorescence spectroscopy, and transmission electron microscopy (TEM). The strong absorption and luminescence shown by these NCs are very promising for a possible exploitation both as label for bioimaging and for optical sensors for heavy metal ions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2243-2248

Citation:

Online since:

December 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Rai, A.P. Ingle, S. Birla, A. Yadav, C.A. Santos, Strategic role of selected noble metal nanoparticles in medicine, Rev Microbiol 42 (2016) 696-719.

Google Scholar

[2] M.C. Edmundson, M. Capeness, Exploring the potential of metallic nanoparticles within synthetic biology, New Biotechnology 31 (2014) 572-578.

DOI: 10.1016/j.nbt.2014.03.004

Google Scholar

[3] X.T. Zheng, A. Ananthanarayanan, K.Q. Luo, P. Chen,Glowing Graphene Quantum Dots and Carbon Dots: Properties, Syntheses, and Biological Applications, Small 11 (2015) 1620-1636.

DOI: 10.1002/smll.201402648

Google Scholar

[4] P. Prosposito, M. Casalboni, E. Orsini, C. Palazzesi, F. Stella, UV-nanoimprinting lithography of Bragg Gratings on hybrid sol-gel based channel waveguides, Solid State Sciences 12(11) (2010) 1886-1889.

DOI: 10.1016/j.solidstatesciences.2010.03.014

Google Scholar

[5] R. De Angelis, L. D'Amico, M. Casalboni, F. Hatami, W.T. Masselink, P. Prosposito, Photoluminescence sensitivity to methanol vapours of surface InP quantum dot: Effect of dot size and coverage, Sensors and Actuators B: Chemical 189 (2013) 113-117.

DOI: 10.1016/j.snb.2013.01.057

Google Scholar

[6] D. Barettin, A. Di Carlo, R. De Angelis, M. Casalboni, P. Prosposito, Effect of dielectric Bragg grating nanostructuring on dye sensitized solar cells, Opt. Express 20(23) (2012) A888-A897.

DOI: 10.1364/oe.20.00a888

Google Scholar

[7] P. Zheng, N. Wu, Fluorescence and Sensing Applications of Graphene Oxide and Graphene Quantum Dots: A Review, Chemistry-An Asian Journal (2017).

DOI: 10.1002/asia.201700814

Google Scholar

[8] E. Priyadarshini & N. Pradhan, Gold nanoparticles as efficient sensors in colorimetric detection of toxic metal ions: a review, Sensors and Actuators B: Chemical 238 (2017) 888-902.

DOI: 10.1016/j.snb.2016.06.081

Google Scholar

[9] A. Yadav, R. De Angelis, M. Casalboni, F. De Matteis, P. Prosposito, F. Nanni, I. Cacciotti, Spectral properties of selfassembled polystyrene nanospheres photonic crystals doped with luminescent dyes, Optical Materials 35(8) (2013) 1538-1543.

DOI: 10.1016/j.optmat.2013.03.020

Google Scholar

[10] D. Barettin, R. De Angelis, P. Prosposito, M. Auf der Maur, M. Casalboni, A. Pecchia, Model of a realistic InP surface quantum dot extrapolated from atomic force microscopy results, Nanotechnology 25 (2014) 195201.

DOI: 10.1088/0957-4484/25/19/195201

Google Scholar

[11] R. De Angelis, S. Melino, P. Prosposito, M. Casalboni, F.R. Lamastra, F. Nanni, L. Bruno, R. Congestri The diatom Staurosirella pinnata for photoactive material production, PLoS ONE 11.11 (2016) e0165571.

DOI: 10.1371/journal.pone.0165571

Google Scholar

[12] P. Prosposito, R. De Angelis, F. De Matteis, F. Hatami, W.T. Masselink, H. Zhang, M. Casalboni Physico-chemical mechanism for the vapors sensitivity of photoluminescent InP quantum dots, IOP Conference Series: Materials Science and Engineering 108 (2016) 012034.

DOI: 10.1088/1757-899x/108/1/012034

Google Scholar

[13] I.Diez, R. H. A. Ras, Flourescent silver nanoclusters, Nanoscale 3.5 (2011) 1963-1970.

Google Scholar

[14] L. Zhang, W. Erkang, Metal nanoclusters: new fluorescent probes for sensors and bioimaging, Nano Today 9.1 (2014) 132-157.

DOI: 10.1016/j.nantod.2014.02.010

Google Scholar

[15] I. Venditti, I. Fratoddi, C. Palazzesi, P. Prosposito, M. Casalboni, C. Cametti, C. Battocchio, G. Polzonetti, M. V. Russo, Self-assembled nanoparticles of functional copolymers for photonic applications, Journal of Colloid and Interface Science 348 (2010) 424-430.

DOI: 10.1016/j.jcis.2010.04.061

Google Scholar

[16] Y. Bhattacharjee, D. Chatterjee, A. Chakraborty, Mercaptobenzoheterocyclic compounds functionalized silver nanoparticle, an ultrasensitive colorimetric probe for Hg (II) detection in water with picomolar precision: A correlation between sensitivity and binding affinity, Sensors and Actuators B: Chemical 255 (2018) 210-216.

DOI: 10.1016/j.snb.2017.08.066

Google Scholar

[17] Y. Xia, H. Yang, C.T. Campbell, Nanoparticles for catalysis, Accounts of chemical research, (2013) 1671-1672.

Google Scholar

[18] N. D. Burrows, A.M. Vartanian, N.S. Abadeer, E.M. Grzincic, L.M. Jacob, W. Lin, J. Li, J.M. Dennison, J.G. Hinman, C.J. Murphy, Anisotropic Nanoparticles and Anisotropic Surface Chemistry, The journal of physical chemistry letters 7 (2016) 632-341.

DOI: 10.1021/acs.jpclett.5b02205

Google Scholar

[19] I. Venditti, N. Barbero, M.V. Russo, A. Di Carlo, F. Decker, I. Fratoddi, C. Barolo, D. Dini, Electrodeposited ZnO with squaraine sentisizers as photoactive anode of DSCs, Materials Research Express 1.1 (2014) 015040.

DOI: 10.1088/2053-1591/1/1/015040

Google Scholar

[20] P. Prosposito, L. D'Amico, M. Casalboni, N. Motta, Periodic arrangement of mono-dispersed gold nanoparticles for high performance polymeric solar cells, Nanotechnology (IEEE-NANO), 2015 IEEE 15th International Conference on. IEEE; 2015. pp.378-380.

DOI: 10.1109/nano.2015.7389005

Google Scholar

[21] I. Fratoddi, A. Macagnano, C. Battocchio, E. Zampetti, I. Venditti, M.V. Russo, A. Bearzotti, Platinum nanoparticles on electrospun titania nanofibers as hydrogen sensing materials working at room temperature, Nanoscale 6.15 (2014) 9177-9184.

DOI: 10.1039/c4nr01400f

Google Scholar

[22] P. Prosposito, F. Mochi, E. Ciotta, M. Casalboni, F. De Matteis, I. Venditti, L. Fontana, G. Testa, I. Fretoddi, Hydrophilic silver nanoparticles with tunable optical properties: application for the detection of heavy metals in water, Beilstein journal of nanotechnology 7 (2016) 1657-1661.

DOI: 10.3762/bjnano.7.157

Google Scholar

[23] J. Zheng, P. R. Nicovich, R.M. Dickson, Highly fluorescent noble metal quantum dots, annual reviews of physical chemistry 58 (2007) 409-431.

DOI: 10.1146/annurev.physchem.58.032806.104546

Google Scholar

[24] W. Guo, J. Yuan, E. Wang, Oligonucleotide-stabilized Ag nanoclusters as novel fluorescence probes for the highly selective and sensitive detection of the Hg2+ ion, Chemical Communications 23 (2009) 3395-3397.

DOI: 10.1039/b821518a

Google Scholar

[25] L. Zhang, J. Zhu, J. Ai, Z. Zhou, X. Jia, E. Wang, Label-free G-quadruplex-specific fluorescent probe for sensitive detection of copper (II) ion, Biosensors and Bioelectronics 39.1 (2013) 268-273.

DOI: 10.1016/j.bios.2012.07.058

Google Scholar

[26] H. Zhang, Q. Liu, T. Wang, Z. Yun, G. Li, J. Liu, G. Jiang, Facile preparation of glutathionestabilized gold nanoclusters for selective determination of chromium (III) and chromium (VI) in environmental water samples, Analytica chimica acta 770 (2013) 140-146.

DOI: 10.1016/j.aca.2013.01.042

Google Scholar

[27] S. Roy, P. Goutam, B. Arindam, The as-prepared gold cluster-based fluorescent sensor for the selective detection of As III ions in aqueous solution, Nanoscale 4.8 (2012) 2734-2740.

DOI: 10.1039/c2nr11786j

Google Scholar

[28] C. Wang, Y. Wang, L. Xu, X. Shi, X. Li, X. Xu, H. Sun, B. Yang, Q. Lin, A galvanic replacement route to prepare strongly fluorescent and highly stable gold nanodots for cellular imaging, Small 9.3 (2013) 413-420.

DOI: 10.1002/smll.201201849

Google Scholar

[29] H. Chen, B. Li, X. Ren, S. Li, Y. Ma, S. Cui, Y. Gu, Multifunctional near-infrared-emitting nano-conjugates based on gold clusters for tumor imaging and therapy, Biomaterials 33.33 (2012) 8461-8476.

DOI: 10.1016/j.biomaterials.2012.08.034

Google Scholar

[30] E. Ciotta, P. Prosposito, P. Tagliatesta, C. Lorecchio, I. Venditti, I. Fratoddi, R. Pizzoferrato, Sensitivity to Heavy-Metal Ions of Cage-Opening Fullerene Quantum Dots, Multidisciplinary Digital Publishing Institute Proceedings. Vol. 1. No. 4. (2017).

DOI: 10.3390/proceedings1040475

Google Scholar

[31] E. Ciotta, S. Paoloni, P. Prosposito, P. Tagliatesta, C. Lorecchio, I. Venditti & R. Pizzoferrato, Sensitivity to heavymetal ions of unfolded fullerene quantum dots, Sensors 17 (2017) 2614.

DOI: 10.3390/s17112614

Google Scholar

[32] C. Liu, Y. Ding, Q. Li, Y. Lin, Photochemical synthsis of glutathione-stabilized silver nanoclusters for fluorimetric determination of hydrogen peroxide, Microchim acta 184 (2017) 2497-2503.

DOI: 10.1007/s00604-017-2302-4

Google Scholar

[33] I.G. Dance, The structural chemistry of metal thiolste complexes, Polyhedron 5.5 (1986) 10371104.

Google Scholar