[1]
F.R.N. Nabarro, Z.S. Basinski, D.B. Holt, The plasticity of pure single crystals, Adv. Phys. 13 (1964) 193 -323.
DOI: 10.1080/00018736400101031
Google Scholar
[2]
J.D. Livingston, The density and distribution of dislocations in deformed copper crystals, Acta Metall. 10 (1962) 229.
DOI: 10.1016/0001-6160(62)90120-7
Google Scholar
[3]
S. Saimoto, Dynamic dislocation-defect analysis, Phil. Mag. 86 (2006). 4213-4233.
Google Scholar
[4]
A.S. Argon, Strengthening Mechanisms in Crystal Plasticity, Oxford Press, (2008).
Google Scholar
[5]
J.H. Hollomon, Tensile deformation, Trans. AIME 162 (1945) 268-290.
Google Scholar
[6]
E. Voce, The relationship between stress and strain for homogeneous deformation, J. Inst. Metals, 74 (1948) 537-562.
Google Scholar
[7]
J. Kreyca, E. Kozeschnik, Analysis of the temperature and strain-rate dependence of strain hardening, Metall. Mater. Trans. 49A (2018) 16-21.
DOI: 10.1007/s11661-017-4402-5
Google Scholar
[8]
S. Saimoto, P. Van Houtte, Constitutive relation based on Taylor slip analysis to replicate work-hardening evolution, Acta Mater. 59 (2011) 602-612.
DOI: 10.1016/j.actamat.2010.09.065
Google Scholar
[9]
G.I. Taylor, Plastic strain in metals, J. Inst. Met. LXV11 (1938) 307-324.
Google Scholar
[10]
S. Saimoto, D.J. Lloyd, A new analysis of yielding and work-hardening in AA1100 and AA5754 at low temperatures, Acta Mater. 60 (2012) 6352-6361.
DOI: 10.1016/j.actamat.2012.08.014
Google Scholar
[11]
S. Saimoto, D.J. Diak, Point defect generation, nano-void formation and growth. I. Validation, Philos. Mag. 92 (2012) 1890-1914.
DOI: 10.1080/14786435.2012.661479
Google Scholar
[12]
S. Saimoto, B.J. Diak, D.J. Lloyd, Point defect generation, nano-void formation and growth. II. Criterion for ductile failure. Philos. Mag. 92 (2012) 1915-1936.
DOI: 10.1080/14786435.2012.661480
Google Scholar
[13]
S. Saimoto, P. Van Houtte, K. Inal, M.R. Langille, New biaxial yield function for aluminum alloys based on plastic work and work-hardening analyses, Acta Mater. 118 (2016) 109-119.
DOI: 10.1016/j.actamat.2016.07.036
Google Scholar
[14]
S. Saimoto, M.A. Singh, M.R. Langille, J. Levesque, K. Inal, M. Niewczas, A.R. Woll, Method to decode stress-strain diagrams to identify the structure-strength relationships in aged aluminum alloys, Mater. Sci. Engng. A 709 (2018) 9-16.
DOI: 10.1016/j.msea.2017.10.004
Google Scholar
[15]
H. Mughrabi, The alpha-factor in the Taylor flow-stress law in monotonic, cyclic and quasi-stationary deformations: dependence on slip mode, dislocation arrangement and density, Curr. Opin. Solid State Mater. Sci. 20 (2016) 411-420.
DOI: 10.1016/j.cossms.2016.07.001
Google Scholar
[16]
M. Jobba, R.K. Mishra, M. Niewczas, Flow stress and work-hardening behaviour of Al-Mg binary alloys, Intern. J. Plast. 65 (2015) 43-60.
DOI: 10.1016/j.ijplas.2014.08.006
Google Scholar
[17]
M. Niewczas, D-Y. Park, Flow stress and electrical resistivity in plastically deformed Al subjected to intermittent annealing, Mater. Sci. Engng. A 706 (2017) 256-268.
DOI: 10.1016/j.msea.2017.09.003
Google Scholar
[18]
S. Saimoto, I.B. Timokhina, E. Pereloma, Constitutive relations analyses of dual-phase steels to elucidate structure-strength correlations, JOM 69 (2017) 1228-1235.
DOI: 10.1007/s11837-017-2339-1
Google Scholar
[19]
H. Wang, D.S. Xu, R. Yang, P. Veyssiere, The formation of stacking fault tetrahedral in Al and Cu I. Dipole annihilation and the nucleation stage, Acta Mater. 59 (2011) 1-9.
DOI: 10.1016/j.actamat.2010.07.046
Google Scholar
[20]
S. Saimoto, J.I. Cooley, B.J. Diak, H. Jin, R.K. Mishra, Recovery studies of cold rolled aluminum sheet using X-ray line broadening and activation volume determinations, Acta Mater. 57 (2009) 4822- 4834.
DOI: 10.1016/j.actamat.2009.06.046
Google Scholar
[21]
A.J.E. Foreman, M.J. Makin, Dislocation movement through random arrays of obstacles, Can. J. Phys. 45 (1967) 511-517.
DOI: 10.1139/p67-044
Google Scholar
[22]
S. Saimoto, M.S. Duesbery, Strain rate sensitivity: the role of dislocation loop and point defect recovery, Acta Metall. 32 (1984) 147-155.
DOI: 10.1016/0001-6160(84)90212-8
Google Scholar