Forensic Analyses of Stress-Strain Diagrams to Evaluate Contributions from Microstructure

Article Preview

Abstract:

The conventional characterization of work-hardening is to approximate the stress-strain diagram using the empirical curve-fitting of Hollomon or Voce. The new method uses the Taylor slip analyses to derive a functional form which is optimally fitted to the data. This constitutive relations analysis (CRA) duplicates the data using at least two fit loci. The fit parameters relate to the slip motion within the microstructure and hence its interpretation reveals the possible dynamic shape-change reactions. The fit-process defines a new yield stress which separates the yielding from the deformation mechanisms at large strains that breaks up into two regions separated by intersection parameters. The applications of CRA to nanovoid formation and growth leading to ductile failure, plane stress yield locus prediction using tensile tests and decoding the stress-strain diagram for age-hardened aluminum alloys have been successful. Using super-pure aluminum, this study confirms that CRA is based on crystal plasticity principles and that CRA can predict the correlation of the obstacle strength factor, α, with work-hardening, hence permitting conversion of flow stress at given strains to obstacle density. The derived results show that the inherent annihilation process and the changing strength factor are coordinated to result in a self-consistent constitutive relation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2270-2277

Citation:

Online since:

December 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F.R.N. Nabarro, Z.S. Basinski, D.B. Holt, The plasticity of pure single crystals, Adv. Phys. 13 (1964) 193 -323.

DOI: 10.1080/00018736400101031

Google Scholar

[2] J.D. Livingston, The density and distribution of dislocations in deformed copper crystals, Acta Metall. 10 (1962) 229.

DOI: 10.1016/0001-6160(62)90120-7

Google Scholar

[3] S. Saimoto, Dynamic dislocation-defect analysis, Phil. Mag. 86 (2006). 4213-4233.

Google Scholar

[4] A.S. Argon, Strengthening Mechanisms in Crystal Plasticity, Oxford Press, (2008).

Google Scholar

[5] J.H. Hollomon, Tensile deformation, Trans. AIME 162 (1945) 268-290.

Google Scholar

[6] E. Voce, The relationship between stress and strain for homogeneous deformation, J. Inst. Metals, 74 (1948) 537-562.

Google Scholar

[7] J. Kreyca, E. Kozeschnik, Analysis of the temperature and strain-rate dependence of strain hardening, Metall. Mater. Trans. 49A (2018) 16-21.

DOI: 10.1007/s11661-017-4402-5

Google Scholar

[8] S. Saimoto, P. Van Houtte, Constitutive relation based on Taylor slip analysis to replicate work-hardening evolution, Acta Mater. 59 (2011) 602-612.

DOI: 10.1016/j.actamat.2010.09.065

Google Scholar

[9] G.I. Taylor, Plastic strain in metals, J. Inst. Met. LXV11 (1938) 307-324.

Google Scholar

[10] S. Saimoto, D.J. Lloyd, A new analysis of yielding and work-hardening in AA1100 and AA5754 at low temperatures, Acta Mater. 60 (2012) 6352-6361.

DOI: 10.1016/j.actamat.2012.08.014

Google Scholar

[11] S. Saimoto, D.J. Diak, Point defect generation, nano-void formation and growth. I. Validation, Philos. Mag. 92 (2012) 1890-1914.

DOI: 10.1080/14786435.2012.661479

Google Scholar

[12] S. Saimoto, B.J. Diak, D.J. Lloyd, Point defect generation, nano-void formation and growth. II. Criterion for ductile failure. Philos. Mag. 92 (2012) 1915-1936.

DOI: 10.1080/14786435.2012.661480

Google Scholar

[13] S. Saimoto, P. Van Houtte, K. Inal, M.R. Langille, New biaxial yield function for aluminum alloys based on plastic work and work-hardening analyses, Acta Mater. 118 (2016) 109-119.

DOI: 10.1016/j.actamat.2016.07.036

Google Scholar

[14] S. Saimoto, M.A. Singh, M.R. Langille, J. Levesque, K. Inal, M. Niewczas, A.R. Woll, Method to decode stress-strain diagrams to identify the structure-strength relationships in aged aluminum alloys, Mater. Sci. Engng. A 709 (2018) 9-16.

DOI: 10.1016/j.msea.2017.10.004

Google Scholar

[15] H. Mughrabi, The alpha-factor in the Taylor flow-stress law in monotonic, cyclic and quasi-stationary deformations: dependence on slip mode, dislocation arrangement and density, Curr. Opin. Solid State Mater. Sci. 20 (2016) 411-420.

DOI: 10.1016/j.cossms.2016.07.001

Google Scholar

[16] M. Jobba, R.K. Mishra, M. Niewczas, Flow stress and work-hardening behaviour of Al-Mg binary alloys, Intern. J. Plast. 65 (2015) 43-60.

DOI: 10.1016/j.ijplas.2014.08.006

Google Scholar

[17] M. Niewczas, D-Y. Park, Flow stress and electrical resistivity in plastically deformed Al subjected to intermittent annealing, Mater. Sci. Engng. A 706 (2017) 256-268.

DOI: 10.1016/j.msea.2017.09.003

Google Scholar

[18] S. Saimoto, I.B. Timokhina, E. Pereloma, Constitutive relations analyses of dual-phase steels to elucidate structure-strength correlations, JOM 69 (2017) 1228-1235.

DOI: 10.1007/s11837-017-2339-1

Google Scholar

[19] H. Wang, D.S. Xu, R. Yang, P. Veyssiere, The formation of stacking fault tetrahedral in Al and Cu I. Dipole annihilation and the nucleation stage, Acta Mater. 59 (2011) 1-9.

DOI: 10.1016/j.actamat.2010.07.046

Google Scholar

[20] S. Saimoto, J.I. Cooley, B.J. Diak, H. Jin, R.K. Mishra, Recovery studies of cold rolled aluminum sheet using X-ray line broadening and activation volume determinations, Acta Mater. 57 (2009) 4822- 4834.

DOI: 10.1016/j.actamat.2009.06.046

Google Scholar

[21] A.J.E. Foreman, M.J. Makin, Dislocation movement through random arrays of obstacles, Can. J. Phys. 45 (1967) 511-517.

DOI: 10.1139/p67-044

Google Scholar

[22] S. Saimoto, M.S. Duesbery, Strain rate sensitivity: the role of dislocation loop and point defect recovery, Acta Metall. 32 (1984) 147-155.

DOI: 10.1016/0001-6160(84)90212-8

Google Scholar