Evaluation of a Characteristic Temperature in the Relaxation of Metallic Glass Forming Liquids

Article Preview

Abstract:

The high-temperature viscosity of metallic glass-forming liquids is investigated by using the Bond Strength-Coordination Number Fluctuation (BSCNF) model developed by the authors. For many glass-forming liquids, a salient change in the structural relaxation is observed above the melting point. The temperature dependence of the structural relaxation exhibits a deviation from an Arrhenius-like behavior, and upon cooling it transforms to a non-Arrhenius-like one. In the present study, we show that the BSCNF model describes well the high-temperature viscosity behaviors of metallic liquids. The analysis based on the BSCNF model also enables to extract a characteristic temperature at high temperature. The results of the present study show that such characteristic temperature can be a good indicator for the evaluation of the range of the transition from the Arrhenius-like to the non-Arrhenius-like relaxation behavior.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2331-2336

Citation:

Online since:

December 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.D. Ediger, P. Harrowell: J. Chem. Phys. 137 (2012) 080901.

Google Scholar

[2] H.F. Li, Y.F. Zheng: Acta Biomater. 36 (2016) 1.

Google Scholar

[3] K.F. Kelton: J. Phys.: Condens. Matter 29 (2017) 023002.

Google Scholar

[4] R. Soklaski, V. Tran, Z. Nussinov, K.F. Kelton, L. Yang: Phil. Mag. 96 (2016) 1212.

Google Scholar

[5] N.V. Surovtsev: Chem. Phys. Lett. 477 (2009) 57.

Google Scholar

[6] V.N. Novikov: Chem. Phys. Lett. 659 (2016) 133.

Google Scholar

[7] A. Jaiswal, T. Egami, K.F. Kelton, K.S. Schweizer, Y. Zhang: Phys. Rev. Lett. 117 (2016) 205701.

Google Scholar

[8] G. Adam, J.H. Gibbs: J. Chem. Phys. 43 (1965) 139.

Google Scholar

[9] E. Donth: J. Non-Cryst. Solids 53 (1982) 325.

Google Scholar

[10] B. Rijal, L. Delbreilh, A. Saiter: Macromolecules 48 (2015) 8219.

Google Scholar

[11] C. Dalle-Ferrier, C. Thibierge, C. Alba-Simionesco, L. Berthier, G. Biroli, J.-P. Bouchaud, F. Ladieu, D. L'Hôte, G. Tarjus: Phys. Rev. E 76 (2007) 041510.

DOI: 10.1103/physreve.76.041510

Google Scholar

[12] D. Turnbull, M.H. Cohen: J. Chem. Phys. 34 (1961) 120.

Google Scholar

[13] I. Avramov, A. Milchev: J. Non-Cryst. Solids 104 (1988) 253.

Google Scholar

[14] J.C. Mauro, Y. Yue, A.J. Ellison, P.K. Gupta, D.C. Allan: Proc. Natl. Acad. Sci. U.S.A. 106 (2009) 19780.

Google Scholar

[15] N.B. Weingartner, C. Pueblo, K.F. Kelton, Z. Nussinov: arXiv:1512.04565v5 [cond-mat.dis-nn], (2017).

Google Scholar

[16] M. Aniya: J. Therm. Anal. Cal. 69 (2002) 971.

Google Scholar

[17] M. Ikeda, M. Aniya: J. Non-Cryst. Solids 371-372 (2013) 53.

Google Scholar

[18] M. Ikeda, M. Aniya: Eur. Polym. J. 86 (2017) 29.

Google Scholar

[19] V.A. Popova, V.K. Malinovskii, N.V. Surovtsev: Glass Phys. Chem. 39 (2013) 124.

Google Scholar

[20] W. Götze, L. Sjögren: Rep. Prog. Phys. 55 (1992) 241.

Google Scholar

[21] V.A. Popova, N.V. Surovtsev: Phys. Rev. E 90 (2014) 032308.

Google Scholar

[22] N.V. Surovtsev, S.V. Adichtchev, V.K. Malinovsky: Phys. Rev. E 76 (2007) 021502.

Google Scholar

[23] S.V. Adichtchev, St. Benkhof, Th. Blochowicz, V.N. Novikov, E. Rössler, Ch. Tschirwitz, J. Wiedersich: Phys. Rev. Lett. 88 (2002) 055703.

DOI: 10.1103/physrevlett.88.055703

Google Scholar

[24] M. Ikeda, M. Aniya: J. Therm. Anal. Cal. (2018), doi.org/10.1007/s10973-018-6976-6.

Google Scholar

[25] M.E. Blodgett, T. Egami, Z. Nussinov, K.F. Kelton: Sci. Rep. 5 (2015) 13837.

Google Scholar

[26] P. Heintzmann, F. Yang, S. Schneider, G. Lohöfer, A. Meyer: Appl. Phys. Lett. 108 (2016) 241908.

DOI: 10.1063/1.4953871

Google Scholar

[27] S. Mukherjee, J. Schroers, Z. Zhou, W.L. Johnson, W.-K. Rhim: Acta Mater. 52 (2004) 3689.

Google Scholar

[28] Y. Kawamura, A. Inoue: Appl. Phys. Lett. 77 (2000) 1114.

Google Scholar

[29] D. Kivelson, S.A. Kivelson, X. Zhao, Z. Nussinov, G. Tarjus: Physica A 219 (1995) 27.

DOI: 10.1016/0378-4371(95)00140-3

Google Scholar

[30] V.A. Popova, N.V. Surovtsev: arXiv:1104.2693v1 [cond-mat.mtrl-sci], (2011).

Google Scholar