Hot Forming Optimization of ZK30 Magnesium Alloy

Article Preview

Abstract:

The modeling of the forming of materials at high homologous temperatures allows obtaining optimum forming parameters, reduced costs and improving final properties of the finished product. In this work, the behavior of the ZK30 Magnesium alloy was characterized by means of compression tests at temperatures 300 to 450oC and strain rates between 0.1 and 8.7 s-1. Using data from these tests, the parameters of the Garofalo equation are calculated. In addition, by means of the second Lyapunov stability criterion, the optimum temperature at a given temperature is determined which should minimize the appearance of deformation bands and cracks during hot working. This temperature was found to be 641 K (368oC) at 8.7 s-1.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2325-2330

Citation:

Online since:

December 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Mima, Y. Tanaka, Aging characteristics of magnesium-4 wt. percent zinc alloy, Trans. JIM 12 (1971) 71-75.

DOI: 10.2320/matertrans1960.12.71

Google Scholar

[2] C. García, M. Carsí, F. Peñalba, M.P. de Andrés, Structure-thermomechanical parameters relationship and Zener-Hollomon equation for two vanadium microalloyed steels, J. Mater. Sci. 27 (1992) 4567-4576.

DOI: 10.1007/bf01165989

Google Scholar

[3] M. Carsí, F. Peñalba, I. Rieiro, F. Zapirain, O.A. Ruano, Hot forging of a Cu-Al-Ni-Fe-Mn alloy and its simulation by torsion testing, Z. Metalkd. 91(2000) 1057-1062.

Google Scholar

[4] I. Rieiro, O.A. Ruano, M. Eddahbi, M. Carsí, Integral method from initial values to obtain the best fit of the Garofalo´s creep equation, J. Mater. Process. Tech. 78 (1998) 177-183.

DOI: 10.1016/s0924-0136(97)00481-0

Google Scholar

[5] M. Carsí, F. Peñalba, I. Rieiro, O.A. Ruano, High temperature workability behaviour of a modified P92 steel, Int. J. Mater. Res. 102 (2011) 1378-1383.

DOI: 10.3139/146.110603

Google Scholar

[6] F. Garofalo, An empirical relation defining the stress dependence of minimum creep rate in metals, Trans AIME 227 (1963) 1474-1477.

Google Scholar

[7] H.J. McQueen, N.D. Ryan, Constitutive analysis in hot working, Mater. Sci. Eng. A 322 (2002) 43-63.

Google Scholar

[8] M. Carsí, F. Peñalba, J. Ibáñez, G. González-Doncel, Prediction of superplastic behavior from high strain rate tests, Mater. Lett. 20 (1994) 119-123.

DOI: 10.1016/0167-577x(94)90072-8

Google Scholar

[9] M. Carsí, R. Allende, F. Peñalba, J.A. Jiménez, O.A. Ruano, Simulation of the forming behavior of a boron modified P91 ferritic steel, Steel Res. Int. 75 (2004) 26-32.

DOI: 10.1002/srin.200405922

Google Scholar

[10] I. Rieiro, M. Carsı, O.A. Ruano, New numerical method for fit of Garofalo equation and its application for predicting hot workability of (V–N) microalloyed steel, Mater. Sci. Tech. 25 (2009) 995-1002.

DOI: 10.1179/174328408x369429

Google Scholar

[11] I. Rieiro, V. Gutiérrez, J. Castellanos, M. Carsí, M. T. Larrea, O.A. Ruano, A new constitutive strain dependent Garofalo equation to describe the high-temperature processing of materials. Application to the AZ31 magnesium alloy, Metall. Mater. Trans. A 41 (2010) 2396- 2407.

DOI: 10.1007/s11661-010-0259-6

Google Scholar

[12] I. Rieiro, M. Carsí, O.A. Ruano, A new stability criterion for the hot deformation behavior of materials. Application to the AZ31 magnesium alloy, Metall. Mater. Trans. A 48 (2017) 3445-3460.

DOI: 10.1007/s11661-017-4102-1

Google Scholar

[13] I. Rieiro, Estudio y resolución de la ecuación fenomenológica de Garofalo para la fluencia plástica en estado estacionario de materiales metálicos policristalinos. Determinación de su capacidad de aplicación y base física, PhD thesis, Universidad Complutense de Madrid, (1997).

DOI: 10.3989/revmetalm.1998.v34.iextra.771

Google Scholar