Structural, Electronic and Mechanical Properties of Perovskite Oxides LaMO3 (M = Mn, Ni) Compounds in the High and Low Symmetric Phases by First Principle Calculation

Article Preview

Abstract:

The widely investigated perovskite oxides has attracted for a long time a great interest on the physical properties, in their bulk structures as well as the heterostructures components. The Lanthanum transition metal oxides LaMO3 (M= Transition metal) is part of, due to their potential use in advanced technology (including superconductivity, magnetoresistance, ionic conductivity, and a multitude of dielectric properties). Despite the broad exploration of the physical properties, we found a considerable lack in the investigation of the mechanical properties of the LaMO3 compounds. By applying the Density Functional Theory (DFT), we shed light on the structural, electronic, and especially mechanical properties of the experimentally verified phases of The LaMnO3, and LaNiO3. We first calculated the structural and electronic properties, then we continue with the single-crystal elastic constants and mechanical properties, where the bulk, shear and Young’s moduli, and the Anisotropy indexes were deduced, in order to remedy the existing gap of the theoretical knowledge about the mechanical behavior of the LaMnO3, and LaNiO3 compounds.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2300-2305

Citation:

Online since:

December 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z. Yang, Y. Huang, B. Dong et H. L. Li, Mater. Res. Bull, vol. 41, (2006) 274.

Google Scholar

[2] D. Hammer, J. Wu et C. Leighton, Phys. Rev. B, vol. 69, (2004) 134407.

Google Scholar

[3] J. He et C. Franchini, Phy. Rev. B, vol. 3, (2012) 32.

Google Scholar

[4] I. Solovyev, N. Hamada et K. Terakura, Phys. Rev. lett. vol. 76, (1996) 4825-4828.

Google Scholar

[5] M. Uehara, S. Mori, C. Chen et S. Cheong, Nature, vol. 399, (1999) 560-563.

Google Scholar

[6] J. M. Coey, M. Viret et S. von Molnar, Adv. Phys, vol. 167, (1999) 48.

Google Scholar

[7] J. Chaloupka et G. Khaliullin, Phys. Rev. Lett, vol. 100 (2008) 016404.

Google Scholar

[8] D. G. Oulette, S. B. Lee, S. Stemmer, L. Balents, Phys. Rev. B, vol.82 (2010) 165112.

Google Scholar

[9] M. Gibert, P. Zubko, R. Scherwitzl, J. Iniguez et J.-M. Trisconne, Nat. Mater, vol. 11 (2012) 195.

Google Scholar

[10] N. Hamada, J. Phys. Chem. Solids, vol. 54 (1993) 1157.

Google Scholar

[11] L. Guan, B. Liu, L. Jin, J. Guo, Q. Zhao, Y. Wang et G. Fu, Sol. Stat Com. vol. 150 (2010) (2011).

Google Scholar

[12] S. Masys et V. Jonauskas, Comput. Mater. Sci. vol. 108 (2015) 153.

Google Scholar

[13] M. Dine El Hannani, D. Rached, M. Rabah, Mater Sci Semicond Process. vol. 11 (2008) 81.

Google Scholar

[14] A. L. Gavin et G. W. Watson, Solid State Ion. vol. 299 (2017) 13-17.

Google Scholar

[15] P. Hohenberg and W. Kohn, Inhomegeneous electron gas,, Phys. Rev. vol. 136 (1964) B864.

DOI: 10.1103/physrev.136.b864

Google Scholar

[16] W. Kohn and L. Sham, " Phys. Rev. vol. 140 (1965) A1133.

Google Scholar

[17] J. Perdew, K. Burke et M. Ernzerhof, Phys. Rev. Lett. vol. 77 (1996) 3865-3868.

Google Scholar

[18] S. Duradev, G. Botton, S. Savrasov, and A. Sutton, Phys. Rev. B, vol. 57 (1998) 1505-1509.

Google Scholar

[19] A. Liechtenstein, V. Anisimov et J. Zaanen, Phys. Rev. B, vol. 52 (1995) R5467-R5471.

Google Scholar

[20] V. M. Goldschmidt, Naturwissenschaften, vol. 477 (1926) 14.

Google Scholar

[21] E. O. Wollan et W. C. Koehler, Condens. Matter, vol. 9 (1997) 8171.

Google Scholar