Mastering of the Filling Stage in Low Pressure Sand Casting Process

Article Preview

Abstract:

In Low Pressure Casting (LPC), the counter gravity filling at low velocity and the protective gas atmosphere above the metal can potentially reduce gas and oxides entrapment in the metal. However, the relationship between the imposed gas pressure evolution and the melt filling dynamics cannot be analytically determined as it is geometry-dependent. This issue is the missing link to master and automate the filling step in LPC process. In this work, the filling dynamics is numerically investigated for different mold geometries and pressure ramps. The simulation, carried out using ANSYS Fluent® simulation software, is combined with an analytical model. As the results are quantitatively predictive of the filling flow, it permits to develop a numerical study, considering different sudden or progressive section changes and pressure ramps. The impact of the different process parameters on the flow dynamics is analyzed, particularly the transition smoothing impact.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2306-2312

Citation:

Online since:

December 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.Campbell, Castings, Elsevier Science, (1991).

Google Scholar

[2] J. Runyoro, J., Boutorabi, S. M. A., & Campbell, Critical gate velocities for film-forming casting alloys: a basis for process specification, AFS Trans. 100 (1992) 225–234.

Google Scholar

[3] S.G. Liu, F.Y. Cao, X.Y. Zhao, Y.D. Jia, Z.L. Ning, J.F. Sun, Characteristics of mold filling and entrainment of oxide film in low pressure casting of A356 alloy, Mater. Sci. Eng. A. 626 (2015) 159–164.

DOI: 10.1016/j.msea.2014.12.058

Google Scholar

[4] H. Puga, J. Barbosa, T. Azevedo, S. Ribeiro, J.L. Alves, Low pressure sand casting of ultrasonically degassed AlSi7Mg0.3 alloy: Modelling and experimental validation of mould filling, Mater. Des. 94 (2016) 384–391.

DOI: 10.1016/j.matdes.2016.01.059

Google Scholar

[5] J.C. Hogg, H. Westengen, D.L. Albright, Low pressure sand casting of magnesium alloys, in: Extr. Refining, Fabr. Light Met., Elsevier, 1991: p.57–65.

DOI: 10.1016/b978-0-08-041444-7.50012-3

Google Scholar

[6] Z.-T. Fan, S. Ji, Low pressure lost foam process for casting magnesium alloys, Mater. Sci. Technol. 21 (2005) 727–734.

DOI: 10.1179/174328405x43199

Google Scholar

[7] J. Zeng, P. Gu, Y. Zou, Z. Xu, Simulation of mold filling under counter gravity for A356 alloy and A356/SiCp composite, Mater. Sci. Eng. A. 499 (2009) 130–133.

DOI: 10.1016/j.msea.2007.11.147

Google Scholar

[8] A. Sanitas, M. Bedel, M. El Mansori, Experimental and numerical study of section restriction effects on filling behavior in low-pressure aluminum casting, J. Mater. Process. Technol. 254 (2018).

DOI: 10.1016/j.jmatprotec.2017.11.013

Google Scholar

[9] ANSYS Inc., Ansys Fluent Theory Guide, (2013).

Google Scholar

[10] N.K. Kund, P. Dutta, Numerical study of solidification of A356 aluminum alloy flowing on an oblique plate with experimental validation, J. Taiwan Inst. Chem. Eng. 51 (2015) 159–170.

DOI: 10.1016/j.jtice.2015.01.002

Google Scholar

[11] A. Sanitas, Étude expérimentale et numérique de la coulée basse-pression de l'alliage de magnésium RZ5 dans des moules en sable imprimés en 3D, ENSAM, 2017. http://www.theses.fr/s134727.

Google Scholar