[1]
P.C. Hsiao, K.K. Hayashi, R. Nishi, X.C. Lin, M. Nakashima, Investigation of concrete-filled double-skin steel tubular columns with ultrahigh-strength steel, Journal of Structural Engineering, 141(7) (2015) 04014166-1-7.
DOI: 10.1061/(asce)st.1943-541x.0001126
Google Scholar
[2]
S. Seangatith, J. Thumrongvut, Behaviors of square thin-walled steel tubed RC columns under direct axial compression on RC core, Procedia Engineering, 14 (2011) 513-520.
DOI: 10.1016/j.proeng.2011.07.064
Google Scholar
[3]
L.H. Han, W. Li, R. Bjorhovde, Developments and advanced applications of concrete-filled steel tubular (CFST) structures: Members, Journal of Constructional Steel Research, 100 (2014) 211-228.
DOI: 10.1016/j.jcsr.2014.04.016
Google Scholar
[4]
H.S. Saw, J.Y.R. Liew, Assessment of current methods for the design of composite columns in buildings, Journal of Constructional Steel Research, 53(2) (2000) 121-147.
DOI: 10.1016/s0143-974x(99)00062-0
Google Scholar
[5]
A. Fam, F.S. Qie, S. Riakalla, Concrete-filled steel tubes subjected to axial compression and lateral cyclic loads, Journal of Structural Engineering, 130(4) (2004) 631-640.
DOI: 10.1061/(asce)0733-9445(2004)130:4(631)
Google Scholar
[6]
P. Gajalakshmi, H. Helena, Behaviour of concrete-filled steel columns subjected to lateral cyclic loading, Journal of Constructional Steel Research, 75 (2012) 55-63.
DOI: 10.1016/j.jcsr.2012.03.006
Google Scholar
[7]
X. Ji, H. Kang, X. Chen, J. Qian, Seismic behavior and strength capacity of steel tube-reinforced concrete composite columns, Earthquake Engineering & Structural Dynamics, 43(4) (2013) 487-505.
DOI: 10.1002/eqe.2354
Google Scholar
[8]
V. Patel, Q. Liang, M. Hadi, Numerical analysis of high-strength concrete-filled steel tubular slender beam-columns under cyclic loading, Journal of Constructional Steel Research, 92 (2014) 183-194.
DOI: 10.1016/j.jcsr.2013.09.008
Google Scholar
[9]
J. Liu, S. Zhang, X. Zhang, L. Guo, Behavior and strength of circular tube confined reinforced-concrete (CTRC) columns, Journal of Constructional Steel Research, 65(7) (2009) 1447-1458.
DOI: 10.1016/j.jcsr.2009.03.014
Google Scholar
[10]
B. Uy, Strength of short concrete filled high strength steel box columns, Journal of Constructional Steel Research, 57(2) (2001) 113-134.
DOI: 10.1016/s0143-974x(00)00014-6
Google Scholar
[11]
G. Giakoumelis, D. Lam, Axial capacity of circular concrete-filled tube columns, Journal of Constructional Steel Research, 60(7) (2004) 1049-1068.
DOI: 10.1016/j.jcsr.2003.10.001
Google Scholar
[12]
T. Ishizawa, T. Nakano, M. Iura, Experimental study on partially concrete-filled steel tubular columns, Steel and Composite Structures, 6(1) (2006) 55-69.
DOI: 10.12989/scs.2006.6.1.055
Google Scholar
[13]
B. Chen, X. Liu, S.J. Li, Performance investigation of square concrete-filled steel tube columns, Journal of Wuhan University of Technology-Mater. Sci. Ed., 26(4) (2011) 730-736.
DOI: 10.1007/s11595-011-0302-5
Google Scholar
[14]
M. Dundu, Compressive strength of circular concrete filled steel tube columns, Thin-Walled Structures, 56 (2012) 62-70.
DOI: 10.1016/j.tws.2012.03.008
Google Scholar
[15]
Y. Lu, N. Li, S. Li, H. Liang, Behavior of steel fiber reinforced concrete-filled steel tube columns under axial compression, Construction and Building Materials, 95 (2015) 74-85.
DOI: 10.1016/j.conbuildmat.2015.07.114
Google Scholar
[16]
C. Bing, W. Zhen, L. Ning, Experimental research on properties of high-strength foamed concrete, Journal of Materials in Civil Engineering, 24(1) (2012) 113-118.
DOI: 10.1061/(asce)mt.1943-5533.0000353
Google Scholar
[17]
American Concrete Institute. Building Code Requirements for Structural Concrete and Commentary (ACI 318-11). Detroit, Michigan, (2011).
Google Scholar
[18]
J. Thumrongvut, S. Seangatith, T. Siriparinyanan, S. Wangrakklang, An experimental behaviour of cellular lightweight concrete-filled steel square tube columns under axial compression, Materials Science Forum, 860 (2016) 121-124.
DOI: 10.4028/www.scientific.net/msf.860.121
Google Scholar