Properties of Induction Reversion-Refined Microstructures of AISI 301LN under Monotonic, Cyclic and Rolling Deformation

Article Preview

Abstract:

In recent years, the efficient grain size refinement in austenitic stainless steels by the martensitic reversion process and the mechanical properties achieved in a laboratory-scale have been investigated extensively. In order to demonstrate the feasibility of this processing in an industrial-scale, a commercial 18Cr-7Ni-0.15N Type 301LN steel was cold rolled to various relative low thickness reductions (32–56%) to obtain 70–95% deformation induced martensite and subsequently annealed in an industrial-scale pilot induction line at the peak temperatures of 660–820 °C. Some sheets were subsequently cold rolled 10–20% to compare the mechanical properties with those of the commercial strengthened grades. Results showed that the induction annealing at around 700 °C can produce reversed structures with much enhanced tensile and fatigue strengths compared to those of the commercial steel. The stability of the grain-refined austenite is lower than that in the commercial steel, but still cold rolling strengthening remains ineffective.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

601-607

Citation:

Online since:

December 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.C. Somani, P. Juntunen, L.P. Karjalainen, R.D.K. Misra, A. Kyröläinen, Enhanced mechanical properties through reversion in metastable austenitic stainless steels, Metall. Mater. Trans. A 40A (2009) 729–744.

DOI: 10.1007/s11661-008-9723-y

Google Scholar

[2] K.H. Lo, C.H. Shek, J.K.L. Lai, Recent developments in stainless steels, Mater. Sci. Eng. R 65 (2009) 39–104.

Google Scholar

[3] P. Behjati, A. Kermanpur, A. Najafizadeh, H. Samaei Baghbadorani, L.P. Karjalainen, J.-G. Jung, Y.-K. Lee, Design of a new Ni-free austenitic stainless steel with unique ultrahigh strength-high ductility synergy, Mater. Des. 63 (2014) 500–507.

DOI: 10.1016/j.matdes.2014.06.069

Google Scholar

[4] I. Tamura, Deformation-induced martensitic transformation and transformation-induced plasticity in steels, Metal Sci. 16 (1982) 245-253.

DOI: 10.1179/030634582790427316

Google Scholar

[5] A. Järvenpää, J. Lämsä, E. Patard, K. Mäntyjärvi, A novel heat treatment line for processing of tailored small batch steels, Key Eng. Mat. 611 (2014) 804-810.

DOI: 10.4028/www.scientific.net/kem.611-612.804

Google Scholar

[6] A. Nieslony, C. Dsoki, H. Kaufmann, P. Krug, New method for evaluation of the Manson–Coffin–Basquin and Ramberg–Osgood equations with respect to compatibility, Int. J. Fatigue 30 (2008) 1967-1977.

DOI: 10.1016/j.ijfatigue.2008.01.012

Google Scholar

[7] A.M. Beese, D. Mohr, Identification of the direction-dependency of the martensitic transformation in stainless steel using in situ magnetic permeability measurements, Exp. Mech. 51 (2011) 667–676.

DOI: 10.1007/s11340-010-9374-y

Google Scholar

[8] S.S.M. Tavares, M.R. da Silva, J.M. Neto, S. Miraglia, D. Fruchart, Ferromagnetic properties of cold rolled AISI 304L steel, ‎J. Magn. Magn. Mater. 242-245 (2002) 1391-1394.

DOI: 10.1016/s0304-8853(01)01242-2

Google Scholar

[9] A. Järvenpää, M. Jaskari, J. Man, L.P. Karjalainen, Austenite stability in reversion-treated structures of a 301LN steel under tensile loading, Mater. Charact. 127 (2017) 12–26.

DOI: 10.1016/j.matchar.2017.01.040

Google Scholar

[10] A. Järvenpää, M. Jaskari, T. Juuti, L.P. Karjalainen, Demonstrating the effect of precipitation on mechanical stability of austenite in a reversion-treated 301LN stainless steel, Metals 7 (2017) 1-13.

DOI: 10.3390/met7090344

Google Scholar

[11] Järvenpää, M. Jaskari, L.P. Karjalainen, Reversed Microstructures and Tensile Properties after Various Cold Rolling Re-ductions in AISI 301LN Steel, METALS 8 (2018) 109.

DOI: 10.3390/met8020109

Google Scholar

[12] S. Rajasekhara, L.P. Karjalainen, A. Kyröläinen, P.J. Ferreira, Microstructure evolution in nano/submicron grained AISI 301LN stainless steel, Mater. Sci. Eng. A 527 (2010) 1986–(1996).

DOI: 10.1016/j.msea.2009.11.037

Google Scholar

[13] S. Rajasekhara, P.J. Ferreira, L.P. Karjalainen, A. Kyröläinen, Hall–Petch behavior in ultra-fine-grained AISI 301LN stainless steel, Metall. Mater. Trans. A 38 (2007) 1202–1210.

DOI: 10.1007/s11661-007-9143-4

Google Scholar

[14] A. Järvenpää, M. Jaskari, J. Man, L.P. Karjalainen, Stability of grain-refined reversed structures in a 301LN austenitic stain-less steel under cyclic loading, Mater. Sci. Eng. A 703 (2017) 280–292.

DOI: 10.1016/j.msea.2017.07.033

Google Scholar