Behavior of Fatigue Cracks Generated from a Small Artificial-Defect in Plain Specimen of Copper Processed by Equal Channel Angular Pressing

Article Preview

Abstract:

Fatigue tests of ultrafine-grained copper processed by equal channel angular pressing were conducted on the round-bar specimens with a small artificial-defect. The fatigue crack initiated from the defect at an early fatigue stage. After the crack initiation, the crack grew with a 45° inclination to the loading axis at stress amplitudes above 180 MPa. At the stress less than 160 MPa, however, the crack grew perpendicular to the loading axis. The physical background of deferent crack path directions between high-and low-stresses was discussed from the viewpoint of a morphological feature of damaged traces along the crack path.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

614-619

Citation:

Online since:

December 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.Vinogradov, S.Nagasaki, V.Patlan, K.Kitagawa, M.Kawazoe, Fatigue properties of 5056 Al-Mg alloy produced by equal-channel angular pressing, NanoStruct. Mater. 11(1999) 925-934.

DOI: 10.1016/s0965-9773(99)00392-x

Google Scholar

[2] C.S. Chung, J.K. Kim, H.N. Kim, W.J. Kim, Improvement of high-cycle fatigue life in a 6061 Al alloy produced by equal channel angular pressing, Mater. Sci. Eng. A337 (2002) 39-44.

DOI: 10.1016/s0921-5093(02)00010-2

Google Scholar

[3] T.Hanlon, E.D. Tabachnikova, S.Suresh, Fatigue behavior of nanocrystalline metals and alloys, Inter. J. Fatigue 27 (2005)1147-1158.

DOI: 10.1016/j.ijfatigue.2005.06.035

Google Scholar

[4] L.W. Meyer, K.Sommer, T.Halle, M.Hockauf, Crack growth in ultrafine-grained AA6063 produced by equal-channel angular pressing, J. Mater. Sci. 43 (2008) 7426-7431.

DOI: 10.1007/s10853-008-2725-8

Google Scholar

[5] P.Cavaliere, Fatigue properties and crack behavior of ultra-fine and nanocrystalline pure metals, Inter. J. Fatigue 31 (2009) 1476-1489.

DOI: 10.1016/j.ijfatigue.2009.05.004

Google Scholar

[6] H.J. Maier, P.Gabor, I.Karaman , Cyclic stress–strain response and low-cycle fatigue damage in ultrafine grained copper, Mater. Sci. Eng. A410 (2005) 457-461.

DOI: 10.1016/j.msea.2005.08.079

Google Scholar

[7] L.Kunz, P.Lukáš , M.Svpboda, Fatigue strength, microstructural stability and strain localization in ultrafine-grained copper, Mater. Sci. Eng. A434 (2006) 97-104.

DOI: 10.1016/j.msea.2006.02.029

Google Scholar

[8] M.Goto, S.Z. Han, J.Kitamura, T.Yakushiji, J.H. Ahn, S.S. Kim, M.Baba, T.Yamamoto, J.Lee, S-N plots and related phenomena of ultrafine grained copper with different stages of microstructural evolution, Int. J. Fatigue 73 (2015) 98-109.

DOI: 10.1016/j.ijfatigue.2014.11.014

Google Scholar

[9] M.Goto, K.Kamil, S.Z. Han, K.Euh, S.S. Kim, J.Lee, Fatigue-induced grain coarsening and crack growth behavior in ultrafine grained copper under different loading histories, Int. J. Fatigue 51 (2013) 57-67.

DOI: 10.1016/j.ijfatigue.2013.02.008

Google Scholar

[10] M.Goto, T.Yamamoto, S.Z. Han, S.Kim, J-H.Ahn, J. Kitamura, T.Iwamura, J.Lee, Formation mechanism of inclined fatigue-cracks in ultrafine-grained Cu processed by equal channel angular pressing, Int. J. Fatigue 92 (2016) 577-587.

DOI: 10.1016/j.ijfatigue.2016.02.006

Google Scholar

[11] N-A.Noda, M.Kagita, Variations of stress intensity factors of a semi-elliptical surface crack subjected to mode I, II, III loading, Inter. J. Pressure Vessels Piping 81 (2004) 635–644.

DOI: 10.1016/j.ijpvp.2004.03.008

Google Scholar

[12] M.Goto, S.Z. Han, T.Yamamoto, J.Kitamura J.H. Ahn, T.Yakushiji, S.S. Kim, J.Lee, Crack growth rate of inclined and deflected surface-cracks in round-bar specimens of copper processed by equal channel angular pressing under cyclic loading, Eng. Fract. Mech.182 (2017) 100-113.

DOI: 10.1016/j.engfracmech.2017.07.024

Google Scholar