Austenite Grain Growth Simulation in Welding Heat-Affected Zone

Article Preview

Abstract:

To predict austenite grain growth behavior in the heat-affected zone (HAZ) in low alloy steels, a new calculation model is proposed herein. This model mainly considers the solute-drag effect and pinning effect, which restrain the austenite grain growth. To calculate the solute-drag effect, the grain boundary concentration of each element is obtained by Hillert’s Law. Calculations are performed by simulating the HAZ with a temperature gradient using the phase field method for two dimensions. This calculation demonstrates the possibility of quantitatively predicting the pinning force for welding heat inputs.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

620-626

Citation:

Online since:

December 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. C. Cochrane, Weld metal microstructures -a state of the review, Welding in the World, 21 (1983), 16-24.

Google Scholar

[2] J. H. Tweed and J. F. Knott, Micromechanisms of failure in C-Mn weld metals, Acta metal., 35(1987), 1401-1414.

DOI: 10.1016/0001-6160(87)90087-3

Google Scholar

[3] N. Fujiyama, T. Nishibata, A. Seki, H. Hirata, K. Kojima and K. Ogawa, Austenite grain growth simulation considering the solute-drag effect and pinning effect, Sci Technol Adv Mater., 18(2017), 88-95.

DOI: 10.1080/14686996.2016.1244473

Google Scholar

[4] K. Lücke and K. Detert, A quantitative theory of grain-boundary motion and recrystallization in metals in the presence of impurities, Acta Met., 5(1957), 628-637.

DOI: 10.1016/0001-6160(57)90109-8

Google Scholar

[5] G. R. Purdy and Y. J. M Brechet, A solute drag treatment of the effects of alloying elements on the rate of the proeutectoid ferrite transformation in steels, Acta Met., 43(1995), 3763-3774.

DOI: 10.1016/0956-7151(95)90160-4

Google Scholar

[6] T. Nishizawa, I. Ohnuma and K. Ishida, Examination of the Zener Relationship between Grain size and Particle Dispersion, Mat Trans. JIM., 38(1997), 950-956.

DOI: 10.2320/matertrans1989.38.950

Google Scholar

[7] D. Rabbe, Computational Materials Science. Weinheim: Wiley-VCH; (1988).

Google Scholar

[8] I. Steinbach, F. Pezzolla, B. Nestler, M. Seebelberg, R. Prieler, G. J. Schmitz and J. L. L. Rezende, A phase field concept for multiphase systems, Physica D., 94(1996), 135-147.

DOI: 10.1016/0167-2789(95)00298-7

Google Scholar

[9] J. Eiken, B. Böttger and I. Steinbach, Multiphase-field approach for multicomponent alloys with extrapolation scheme for numerical application, Phys. Rev. E., 73(2006), 066122-1-066122-9.

DOI: 10.1103/physreve.73.066122

Google Scholar

[10] MICRESS® : http://www.micress.de(accessed 2015-06-17).

Google Scholar

[11] Y. Suwa, Nippon steel technical report., 102(2013), 19.

Google Scholar