[1]
J.W. Christian, S. Mahajan, Deformation twinning, Prog. Mater. Sci. 39 (1995) 1-157.
Google Scholar
[2]
H. Tobe, H.Y. Kim, T. Inamura, H. Hosoda, S. Miyazaki, Origin of {332} twinning in metastable b-Ti alloys, Acta Mater. 64 (2014) 345–355.
DOI: 10.1016/j.actamat.2013.10.048
Google Scholar
[3]
M.J. Lai, C.C. Tasan, D. Raabe, On the mechanism of {332} twinning in metastable b titanium alloys, Acta Mater. 111 (2016) 173-186.
DOI: 10.1016/j.actamat.2016.03.040
Google Scholar
[4]
S. Hanada, M. Ozeki, O. Izumi, Deformation Characteristics in b Phase Ti-Nb Alloys, Metall. Trans. A 16A (1985) 789-795.
DOI: 10.1007/bf02814829
Google Scholar
[5]
I. Gutierrez-Urrutia, C.-L. Li, K. Tsuchiya, {332}<113> detwinning in a multilayered bcc-Ti–10Mo–Fe alloy, J. Mater. Sci. 52 (2017) 7858-7867.
DOI: 10.1007/s10853-017-1032-7
Google Scholar
[6]
I. Gutierrez-Urrutia, D. Raabe, Grain size effect on strain hardening in Twinning-Induced Plasticity steels, Scripta Mater. 66 (2012) 992-996.
DOI: 10.1016/j.scriptamat.2012.01.037
Google Scholar
[7]
A. Ghaderi, M.R. Barnett, Sensitivity of deformation twinning to grain size in titanium and magnesium, Acta Mater. 59 (2011) 7824–7839.
DOI: 10.1016/j.actamat.2011.09.018
Google Scholar
[8]
A.P. Sutton, R.W. Balluffi, Interfaces in Crystalline Materials, Oxford University Press1995.
Google Scholar
[9]
Y.M. Wang, F. Sansoz, T. LaGrange, R.T. Ott, J. Marian, T.W. Barbee, A.V. Hamza, Defective twin boundaries in nanotwinned metals, Nature Materials 12 (2013) 697-702.
DOI: 10.1038/nmat3646
Google Scholar
[10]
I. Gutierrez-Urrutia, C.-L. Li, S. Emura, X. Min, K. Tsuchiya, Study of {332}<113> twinning in a multilayered Ti-10Mo-xFe (x=1-3) alloy by ECCI and EBSD, Sci. Tech. Adv. Mater. 17(1) (2016) 220-228.
DOI: 10.1080/14686996.2016.1177439
Google Scholar
[11]
R.T. DeHoff, F.N. Rhines, Quantitative Microscopy, McGraw-Hill, New York, (1968).
Google Scholar
[12]
W.L. Wang, X.L. Wang, W. Mei, J. Sun, Role of grain size in tensile behavior in twinning-induced plasticity b Ti-20V-2Nb-2Zr alloy, Mater. Char. 120 (2016) 263-267.
DOI: 10.1016/j.matchar.2016.09.016
Google Scholar
[13]
X. Min, S. Emura, X. Chen, X. Zhou, K. Tsuzaki, K. Tsuchiya, Deformation microstructural evolution and strain hardening of differently oriented grains in twinning-induced plasticity b titanium alloy, Mater. Sci. Eng. A 659 (2016) 1-11.
DOI: 10.1016/j.msea.2016.01.105
Google Scholar
[14]
I.J. Beyerlein, L. Capolungo, P.E. Marshall, R.J. McCabe, C.N. Tomé, Statistical analyses of deformation twinning in magnesium, Phil. Mag. 90 (2010) 2161-2190.
DOI: 10.1080/14786431003630835
Google Scholar
[15]
M.R. Barnett, Z. Keshavarz, A.G. Beer, X. Ma, Non-Schmid behaviour during secondary twinning in a polycrystalline magnesium alloy, Acta Mater. 56 (2008) 5–15.
DOI: 10.1016/j.actamat.2007.08.034
Google Scholar
[16]
Z.-Z. Shi, Y. Zhang, F. Wagner, P.-A. Juan, S. Berbenni, L. Capolungo, J.-S. Lecomte, T. Richeton, On the selection of extension twin variants with low Schmid factors in a deformed Mg alloy, Acta Mater. 83 (2015) 17-28.
DOI: 10.1016/j.actamat.2014.10.004
Google Scholar
[17]
L. Capolungo, I.J. Beyerlein, C.N. Tomé, Slip-assisted twin growth in hexagonal close-packed metals, Scripta Mater. 60 (2009) 32–35.
DOI: 10.1016/j.scriptamat.2008.08.044
Google Scholar
[18]
J. Jonas, S. Mu, T. Al-Samman, G. Gottstein, L. Jiang, É. Martin, The role of strain accommodation during the variant selection of primary twins in magnesium, Acta Mater. 59 (2011) 2046–(2056).
DOI: 10.1016/j.actamat.2010.12.005
Google Scholar
[19]
I.J. Beyerlein, C.N. Tomé, A probabilistic twin nucleation model for HCP polycrystalline metals, Proc. R. Soc. A 466 (2010) 2517-2544.
DOI: 10.1098/rspa.2009.0661
Google Scholar
[20]
S. Hanada, A. Takemura, O. Izumi, The mode of plastic deformation of b Ti-V alloys, Trans. Jpn. Inst. Met. 23(9) (1982) 507-517.
DOI: 10.2320/matertrans1960.23.507
Google Scholar
[21]
I.J. Beyerlein, R.J. McCabe, C.N. Tome, Effect of microstructure on the nucleation of deformation twins in polycrystalline high-purity magnesium: A multi-scale modeling study, J. Mech. Phys. Solids 59 (2011) 988-1003.
DOI: 10.1016/j.jmps.2011.02.007
Google Scholar
[22]
L. Capolungo, P.E. Marshall, R.J. McCabe, I.J. Beyerlein, C.N. Tomé, Nucleation and growth of twins in Zr: A statistical study, Acta Mater. 57 (2009) 6047–6056.
DOI: 10.1016/j.actamat.2009.08.030
Google Scholar
[23]
P.J. Goodhew, T.Y. Tan, R.W. Balluffi, Low energy planes for tilt grain boundaries in gold, Acta Metall. 26 (1978) 557-567.
DOI: 10.1016/0001-6160(78)90108-6
Google Scholar
[24]
S. Ratanaphan, D.L. Olmsted, V.V. Bulatov, E.A. Holm, A.D. Rollett, G.S. Rohrer, Grain boundary energies in body-centered cubic metals, Acta Mater. 88 (2015) 346–354.
DOI: 10.1016/j.actamat.2015.01.069
Google Scholar