Twinning and Detwinning Mechanisms in Beta-Ti Alloys

Article Preview

Abstract:

We have investigated {332}<113> twinning and detwinning mechanisms in β-Ti alloys. Microstructure-twinning relations were evaluated in a β-Ti-15Mo (wt.%) alloy by statistical analysis of the evolving twin structure upon deformation by in-situ SEM testing and electron backscattering diffraction (EBSD). We find that most of the primary twins (~80%) correspond to the higher stressed variant and follow Schmid’s law with respect to the macroscopic stress. Detwinning mechanism was evaluated in a multilayered β-Ti-10Mo-xFe (x: 1-3 wt.%) by EBSD. We find that the detwinning process consists of two independent events that occur at two different microstructural regions, i.e. twin tips located at grain interiors and grain boundaries. Both detwinning modes can be explained from a thermodynamic standpoint where the boundary dissociation processes minimize the boundary free energy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

821-826

Citation:

Online since:

December 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.W. Christian, S. Mahajan, Deformation twinning, Prog. Mater. Sci. 39 (1995) 1-157.

Google Scholar

[2] H. Tobe, H.Y. Kim, T. Inamura, H. Hosoda, S. Miyazaki, Origin of {332} twinning in metastable b-Ti alloys, Acta Mater. 64 (2014) 345–355.

DOI: 10.1016/j.actamat.2013.10.048

Google Scholar

[3] M.J. Lai, C.C. Tasan, D. Raabe, On the mechanism of {332} twinning in metastable b titanium alloys, Acta Mater. 111 (2016) 173-186.

DOI: 10.1016/j.actamat.2016.03.040

Google Scholar

[4] S. Hanada, M. Ozeki, O. Izumi, Deformation Characteristics in b Phase Ti-Nb Alloys, Metall. Trans. A 16A (1985) 789-795.

DOI: 10.1007/bf02814829

Google Scholar

[5] I. Gutierrez-Urrutia, C.-L. Li, K. Tsuchiya, {332}<113> detwinning in a multilayered bcc-Ti–10Mo–Fe alloy, J. Mater. Sci. 52 (2017) 7858-7867.

DOI: 10.1007/s10853-017-1032-7

Google Scholar

[6] I. Gutierrez-Urrutia, D. Raabe, Grain size effect on strain hardening in Twinning-Induced Plasticity steels, Scripta Mater. 66 (2012) 992-996.

DOI: 10.1016/j.scriptamat.2012.01.037

Google Scholar

[7] A. Ghaderi, M.R. Barnett, Sensitivity of deformation twinning to grain size in titanium and magnesium, Acta Mater. 59 (2011) 7824–7839.

DOI: 10.1016/j.actamat.2011.09.018

Google Scholar

[8] A.P. Sutton, R.W. Balluffi, Interfaces in Crystalline Materials, Oxford University Press1995.

Google Scholar

[9] Y.M. Wang, F. Sansoz, T. LaGrange, R.T. Ott, J. Marian, T.W. Barbee, A.V. Hamza, Defective twin boundaries in nanotwinned metals, Nature Materials 12 (2013) 697-702.

DOI: 10.1038/nmat3646

Google Scholar

[10] I. Gutierrez-Urrutia, C.-L. Li, S. Emura, X. Min, K. Tsuchiya, Study of {332}<113> twinning in a multilayered Ti-10Mo-xFe (x=1-3) alloy by ECCI and EBSD, Sci. Tech. Adv. Mater. 17(1) (2016) 220-228.

DOI: 10.1080/14686996.2016.1177439

Google Scholar

[11] R.T. DeHoff, F.N. Rhines, Quantitative Microscopy, McGraw-Hill, New York, (1968).

Google Scholar

[12] W.L. Wang, X.L. Wang, W. Mei, J. Sun, Role of grain size in tensile behavior in twinning-induced plasticity b Ti-20V-2Nb-2Zr alloy, Mater. Char. 120 (2016) 263-267.

DOI: 10.1016/j.matchar.2016.09.016

Google Scholar

[13] X. Min, S. Emura, X. Chen, X. Zhou, K. Tsuzaki, K. Tsuchiya, Deformation microstructural evolution and strain hardening of differently oriented grains in twinning-induced plasticity b titanium alloy, Mater. Sci. Eng. A 659 (2016) 1-11.

DOI: 10.1016/j.msea.2016.01.105

Google Scholar

[14] I.J. Beyerlein, L. Capolungo, P.E. Marshall, R.J. McCabe, C.N. Tomé, Statistical analyses of deformation twinning in magnesium, Phil. Mag. 90 (2010) 2161-2190.

DOI: 10.1080/14786431003630835

Google Scholar

[15] M.R. Barnett, Z. Keshavarz, A.G. Beer, X. Ma, Non-Schmid behaviour during secondary twinning in a polycrystalline magnesium alloy, Acta Mater. 56 (2008) 5–15.

DOI: 10.1016/j.actamat.2007.08.034

Google Scholar

[16] Z.-Z. Shi, Y. Zhang, F. Wagner, P.-A. Juan, S. Berbenni, L. Capolungo, J.-S. Lecomte, T. Richeton, On the selection of extension twin variants with low Schmid factors in a deformed Mg alloy, Acta Mater. 83 (2015) 17-28.

DOI: 10.1016/j.actamat.2014.10.004

Google Scholar

[17] L. Capolungo, I.J. Beyerlein, C.N. Tomé, Slip-assisted twin growth in hexagonal close-packed metals, Scripta Mater. 60 (2009) 32–35.

DOI: 10.1016/j.scriptamat.2008.08.044

Google Scholar

[18] J. Jonas, S. Mu, T. Al-Samman, G. Gottstein, L. Jiang, É. Martin, The role of strain accommodation during the variant selection of primary twins in magnesium, Acta Mater. 59 (2011) 2046–(2056).

DOI: 10.1016/j.actamat.2010.12.005

Google Scholar

[19] I.J. Beyerlein, C.N. Tomé, A probabilistic twin nucleation model for HCP polycrystalline metals, Proc. R. Soc. A 466 (2010) 2517-2544.

DOI: 10.1098/rspa.2009.0661

Google Scholar

[20] S. Hanada, A. Takemura, O. Izumi, The mode of plastic deformation of b Ti-V alloys, Trans. Jpn. Inst. Met. 23(9) (1982) 507-517.

DOI: 10.2320/matertrans1960.23.507

Google Scholar

[21] I.J. Beyerlein, R.J. McCabe, C.N. Tome, Effect of microstructure on the nucleation of deformation twins in polycrystalline high-purity magnesium: A multi-scale modeling study, J. Mech. Phys. Solids 59 (2011) 988-1003.

DOI: 10.1016/j.jmps.2011.02.007

Google Scholar

[22] L. Capolungo, P.E. Marshall, R.J. McCabe, I.J. Beyerlein, C.N. Tomé, Nucleation and growth of twins in Zr: A statistical study, Acta Mater. 57 (2009) 6047–6056.

DOI: 10.1016/j.actamat.2009.08.030

Google Scholar

[23] P.J. Goodhew, T.Y. Tan, R.W. Balluffi, Low energy planes for tilt grain boundaries in gold, Acta Metall. 26 (1978) 557-567.

DOI: 10.1016/0001-6160(78)90108-6

Google Scholar

[24] S. Ratanaphan, D.L. Olmsted, V.V. Bulatov, E.A. Holm, A.D. Rollett, G.S. Rohrer, Grain boundary energies in body-centered cubic metals, Acta Mater. 88 (2015) 346–354.

DOI: 10.1016/j.actamat.2015.01.069

Google Scholar