Microstructures of Ternary Eutectic Refractory Me-Si-B (Me = Mo, V) Alloy Systems

Article Preview

Abstract:

The present work addresses the microstructure evolution of refractory Me-Si-B (Me = Mo, V) alloys consisting of a refractory metal solid solution phase (MeSS) and two intermetallic phases Me5SiB2 and Me3Si. The aim of the present study is to find the ternary eutectic composition in such systems which are expected to combine a well-defined eutectic microstructure with properties such as high strength, an excellent creep resistance at high temperatures and acceptable oxidation behavior. Two refractory metal systems based on molybdenum and vanadium are investigated. Various alloy compositions located in different primary solidification areas were produced by arc-melting and analyzed via SEM. The obtained results are discussed in the light of published liquidus projections. By carrying out these experiments, a MeSS-Me5SiB2-Me3Si ternary eutectic could be determined in both Me-Si-B systems.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

827-832

Citation:

Online since:

December 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.C. Reed, The Superalloys: Fundamentals and Applications, Cambridge University Press, Cambridge, (2006).

Google Scholar

[2] S. Beale, Philos. Trans. R. Soc. London A Math. Phys. Eng. Sci. 370 (2012) 4130–4153.

Google Scholar

[3] D.M. Dimiduk, J.H. Perepezko, MRS Bull. 28 (2003) 639–645.

Google Scholar

[4] B.P. Bewlay, M.R. Jackson, J.C. Zhao, P.R. Subramanian, M.G. Mendiratta, J.J. Lewandowski, MRS Bull. (2003) 646–653.

DOI: 10.1557/mrs2003.192

Google Scholar

[5] C. Seemüller, T. Hartwig, M. Mulser, N. Adkins, M. Wickins, M. Heilmaier, JOM 66 (2014) 1900–(1907).

DOI: 10.1007/s11837-014-1096-7

Google Scholar

[6] F. Gang, K. von Klinski-Wetzel, J.N. Wagner, M. Heilmaier, Oxid. Met. 83 (2014) 119–132.

DOI: 10.1007/s11085-014-9510-7

Google Scholar

[7] B. Gorr, S. Burk, V.B. Trindade, H.-J. Christ, Oxid. Met. 74 (2010) 239–253.

Google Scholar

[8] S. Burk, B. Gorr, H.-J. Christ, Acta Mater. 58 (2010) 6154–6165.

Google Scholar

[9] D. Mukherji, J. Rösler, M. Krüger, M. Heilmaier, M.-C. Bölitz, R. Völkl, U. Glatzel, L. Szentmiklósi, Scr. Mater. 66 (2012) 60–63.

DOI: 10.1016/j.scriptamat.2011.10.007

Google Scholar

[10] D. Shifler, O.M. Strbik, Dep. Navy SBIR/STTR Transit. Program, ONR Approv. # 43-2203-16 (2017) 3474.

Google Scholar

[11] H. Nowotny, E. Dimakopoulou, H. Kudielka, Mh. Chem. 88 (1957) 180–192.

Google Scholar

[12] C.A. Nunes, R. Sakidja, Z. Dong, J.H. Perepezko, Intermetallics 8 (2000) 327–337.

Google Scholar

[13] K. Yoshimi, S.H. Ha, K. Maruyama, R. Tu, T. Goto, Adv. Mater. Res. 278 (2011) 527–532.

Google Scholar

[14] S. Katrych, A. Grytsiv, A. Bondar, P. Rogl, T. Velikanova, M. Bohn, J. Alloys Compd. 347 (2002) 94–100.

DOI: 10.1016/s0925-8388(02)00676-x

Google Scholar

[15] Y. Yang, Y.A. Chang, L. Tan, W. Cao, Acta Mater. 53 (2005) 1711–1720.

Google Scholar

[16] S.H. Ha, K. Yoshimi, J. Nakamura, T. Kaneko, K. Maruyama, R. Tu, T. Goto, J. Alloys Compd. 594 (2014) 52–59.

Google Scholar

[17] R. Sakidja, J. Myers, S. Kim, J.H. Perepezko, Int. J. Refract. Met. Hard Mater. 18 (2000) 193–204.

Google Scholar

[18] R. Sakidja, J.H. Perepezko, S. Kim, N. Sekido, Acta Mater. 56 (2008) 5223–5244.

Google Scholar

[19] G. Hasemann, D. Kaplunenko, I. Bogomol, M. Krüger, JOM 68 (2016) 2847–2853.

DOI: 10.1007/s11837-016-2073-0

Google Scholar

[20] K. Korniyenko, T. Velikanova, P. Rogl, in:, G. Effenberg, S. Ilyenko (Eds.), Landolt-Börnstein, Springer Berlin Heidelberg, Berlin, Heidelberg, 2010, p.19–45.

Google Scholar

[21] D.M. Berczik, US Pat. 5,595,616; 5,693,156, East Hartfort, United Technol. Corp. (1997).

Google Scholar

[22] Y. Yang, Y.A. Chang, Intermetallics 13 (2005) 121–128.

Google Scholar

[23] H. Kudielka, H. Nowotny, G. Findeisen, Mh. Chem. 88 (1957) 1048–1055.

Google Scholar

[24] C.A. Nunes, B.B. De Lima, G.C. Coelho, P.A. Suzuki, J. Phase Equilibria Diffus. 30 (2009) 345–350.

Google Scholar

[25] M. Krüger, V. Bolbut, F. Gang, G. Hasemann, JOM 68 (2016).

Google Scholar

[26] S.H. Ha, K. Yoshimi, K. Maruyama, R. Tu, T. Goto, Mater. Trans. 51 (2010) 1699–1704.

Google Scholar

[27] S.H. Ha, K. Yoshimi, K. Maruyama, R. Tu, T. Goto, Mater. Sci. Eng. A 552 (2012) 179–188.

Google Scholar

[28] D.A.P. Reis, C.A. Nunes, A.C. Neto, Rev. Bras. Apl. Vacuo 26 (2007) 79–82.

Google Scholar

[29] G. Hasemann, (2016) unpublished oxidation experiments.

Google Scholar

[30] W. Kurz, P.R. Sahm, Gerichtete Erstarrung Eutektischer Werkstoffe, Springer-Verlag, Berlin, Heidelberg, New York, (1975).

Google Scholar