[1]
R.C. Reed, The Superalloys: Fundamentals and Applications, Cambridge University Press, Cambridge, (2006).
Google Scholar
[2]
S. Beale, Philos. Trans. R. Soc. London A Math. Phys. Eng. Sci. 370 (2012) 4130–4153.
Google Scholar
[3]
D.M. Dimiduk, J.H. Perepezko, MRS Bull. 28 (2003) 639–645.
Google Scholar
[4]
B.P. Bewlay, M.R. Jackson, J.C. Zhao, P.R. Subramanian, M.G. Mendiratta, J.J. Lewandowski, MRS Bull. (2003) 646–653.
DOI: 10.1557/mrs2003.192
Google Scholar
[5]
C. Seemüller, T. Hartwig, M. Mulser, N. Adkins, M. Wickins, M. Heilmaier, JOM 66 (2014) 1900–(1907).
DOI: 10.1007/s11837-014-1096-7
Google Scholar
[6]
F. Gang, K. von Klinski-Wetzel, J.N. Wagner, M. Heilmaier, Oxid. Met. 83 (2014) 119–132.
DOI: 10.1007/s11085-014-9510-7
Google Scholar
[7]
B. Gorr, S. Burk, V.B. Trindade, H.-J. Christ, Oxid. Met. 74 (2010) 239–253.
Google Scholar
[8]
S. Burk, B. Gorr, H.-J. Christ, Acta Mater. 58 (2010) 6154–6165.
Google Scholar
[9]
D. Mukherji, J. Rösler, M. Krüger, M. Heilmaier, M.-C. Bölitz, R. Völkl, U. Glatzel, L. Szentmiklósi, Scr. Mater. 66 (2012) 60–63.
DOI: 10.1016/j.scriptamat.2011.10.007
Google Scholar
[10]
D. Shifler, O.M. Strbik, Dep. Navy SBIR/STTR Transit. Program, ONR Approv. # 43-2203-16 (2017) 3474.
Google Scholar
[11]
H. Nowotny, E. Dimakopoulou, H. Kudielka, Mh. Chem. 88 (1957) 180–192.
Google Scholar
[12]
C.A. Nunes, R. Sakidja, Z. Dong, J.H. Perepezko, Intermetallics 8 (2000) 327–337.
Google Scholar
[13]
K. Yoshimi, S.H. Ha, K. Maruyama, R. Tu, T. Goto, Adv. Mater. Res. 278 (2011) 527–532.
Google Scholar
[14]
S. Katrych, A. Grytsiv, A. Bondar, P. Rogl, T. Velikanova, M. Bohn, J. Alloys Compd. 347 (2002) 94–100.
DOI: 10.1016/s0925-8388(02)00676-x
Google Scholar
[15]
Y. Yang, Y.A. Chang, L. Tan, W. Cao, Acta Mater. 53 (2005) 1711–1720.
Google Scholar
[16]
S.H. Ha, K. Yoshimi, J. Nakamura, T. Kaneko, K. Maruyama, R. Tu, T. Goto, J. Alloys Compd. 594 (2014) 52–59.
Google Scholar
[17]
R. Sakidja, J. Myers, S. Kim, J.H. Perepezko, Int. J. Refract. Met. Hard Mater. 18 (2000) 193–204.
Google Scholar
[18]
R. Sakidja, J.H. Perepezko, S. Kim, N. Sekido, Acta Mater. 56 (2008) 5223–5244.
Google Scholar
[19]
G. Hasemann, D. Kaplunenko, I. Bogomol, M. Krüger, JOM 68 (2016) 2847–2853.
DOI: 10.1007/s11837-016-2073-0
Google Scholar
[20]
K. Korniyenko, T. Velikanova, P. Rogl, in:, G. Effenberg, S. Ilyenko (Eds.), Landolt-Börnstein, Springer Berlin Heidelberg, Berlin, Heidelberg, 2010, p.19–45.
Google Scholar
[21]
D.M. Berczik, US Pat. 5,595,616; 5,693,156, East Hartfort, United Technol. Corp. (1997).
Google Scholar
[22]
Y. Yang, Y.A. Chang, Intermetallics 13 (2005) 121–128.
Google Scholar
[23]
H. Kudielka, H. Nowotny, G. Findeisen, Mh. Chem. 88 (1957) 1048–1055.
Google Scholar
[24]
C.A. Nunes, B.B. De Lima, G.C. Coelho, P.A. Suzuki, J. Phase Equilibria Diffus. 30 (2009) 345–350.
Google Scholar
[25]
M. Krüger, V. Bolbut, F. Gang, G. Hasemann, JOM 68 (2016).
Google Scholar
[26]
S.H. Ha, K. Yoshimi, K. Maruyama, R. Tu, T. Goto, Mater. Trans. 51 (2010) 1699–1704.
Google Scholar
[27]
S.H. Ha, K. Yoshimi, K. Maruyama, R. Tu, T. Goto, Mater. Sci. Eng. A 552 (2012) 179–188.
Google Scholar
[28]
D.A.P. Reis, C.A. Nunes, A.C. Neto, Rev. Bras. Apl. Vacuo 26 (2007) 79–82.
Google Scholar
[29]
G. Hasemann, (2016) unpublished oxidation experiments.
Google Scholar
[30]
W. Kurz, P.R. Sahm, Gerichtete Erstarrung Eutektischer Werkstoffe, Springer-Verlag, Berlin, Heidelberg, New York, (1975).
Google Scholar