Modification of LPSO Structure in Mg-Ni-Y Alloy with Strontium

Article Preview

Abstract:

Effects of Sr levels on microstructure of the LPSO structure-containing Mg98.5-xNi0.5Y1.0Srx(x=0, 0.05, 0.10, 0.20 at.%) alloy were studied by SEM/EDS and XRD. Without Sr addition, the Mg98.5Ni0.5Y1.0 alloy consists of α-Mg and LPSO structure and the block LPSO structure is distributed along the grain boundary. After adding 0.05 at.% Sr element into Mg98.5Ni0.5Y1.0 alloy, the amount of dendrites decreased. With the increase of Sr content, the size of α-Mg grains decreases firstly and then increases. Meanwhile, the LPSO structure is refined. The addition of Sr element also results in the obvious increment of the amount of lamellar structure, which stretched from the grain boundary to the matrix. The excessive Sr in high Sr-content alloys participates in the form of Mg-Ni-Y-Sr compound, which is distributed in the vicinity of LPSO structure. In addition, the Sr can also promote the formation of Ni-rich and Y-rich phases.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

869-874

Citation:

Online since:

December 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Ali, D. Qiu, B. Jiang, F.S. Pan, M.X. Zhang, Current research progress in grain refinement of cast magnesium alloys: A review article, J. Alloys Compd. 619 (2015) 639-651.

DOI: 10.1016/j.jallcom.2014.09.061

Google Scholar

[2] Y. Kawamura, K. Hayashi, A. Inoue, T. Masumoto, Rapidly solidified powder metallurgy Mg97Zn1Y2 alloys with excellent tensile yield strength above 600MPa, Mater. Trans. 42(2001) 1172-1176.

DOI: 10.2320/matertrans.42.1172

Google Scholar

[3] X.H. Shao, Z.Q. Yang, X.L. Ma, Strengthening and toughening mechanisms in Mg-Zn-Y alloy with a long period stacking ordered structure, Acta Mater. 58 (2010) 4760-4771.

DOI: 10.1016/j.actamat.2010.05.012

Google Scholar

[4] Y.M. Zhu, A.J. Morton, J.F. Nie, Growth and transformation mechanisms of 18R and 14H in Mg-Y-Zn alloys, Acta Mater. 60 (2012) 6562-6572.

DOI: 10.1016/j.actamat.2012.08.022

Google Scholar

[5] Z.J. Yu, Y.D. Huang, H. Dieringa C.L. Mendis, R.G. Guan, N. Hort, J. Meng, High temperature mechanical behavior of an extruded Mg–11Gd–4.5Y–1Nd–1.5Zn–0.5Zr (wt%) alloy, Mater. Sci. Eng. A 645 (2015) 213–224.

DOI: 10.1016/j.msea.2015.08.001

Google Scholar

[6] [6] Y. Wang, W. Rong, Y.J. Wu, L.M. Peng, J. Chen, W.J. Ding, Effects of Mn addition on the microstructures and mechanical properties of the Mg-15Gd-1Zn alloy, J. Alloys and Compd. 698 (2017) 1066–1076.

DOI: 10.1016/j.jallcom.2016.12.165

Google Scholar

[7] [7] X.H. Du, G.S. Duan, M. Hong, D.P. Wang, B.L. Wu, Y.D. Zhang, C. Esling, Effect of V on the microstructure and mechanical properties of Mg–10Er–2Cu alloy with a long period stacking ordered structure, Mater. Lett. 122(2014)312–314.

DOI: 10.1016/j.matlet.2014.02.056

Google Scholar

[8] S. Huang, J.F. Wang, F. Hou, Y. Li, F.S. Pan, Effect of Sn on the formation of the long period stacking ordered phase and mechanical properties of Mg–RE–Zn alloy, Mater. Lett. 137 (2014) 143–146.

DOI: 10.1016/j.matlet.2014.08.145

Google Scholar

[9] J. Zhu, J.B. Chen, T. Liu, J.X. Liu, W.Y. Wang, Z.K. Liu, X.D. Hui, High strength Mg94Zn2.4Y3.6 alloy with long period stacking ordered structure prepared by near-rapid solidification technology, Mater. Sci. Eng. A 679 (2017) 476–483.

DOI: 10.1016/j.msea.2016.10.071

Google Scholar

[10] K. Máthis, G. Farkas, G. Garcés, J. Gubicz, Evolution of dislocation density during compression of a Mg–Zn–Y alloy with long period stacking ordered structure, Mater. Lett. 190 (2017) 86–89.

DOI: 10.1016/j.matlet.2017.01.006

Google Scholar

[11] M. Timpel, N. Wanderka, R. Schlesiger, T. Yamamoto, N. Lazarev, D. Isheim, G. Schmitz, S. Matsumura, J. Banhart, The role of strontium in modifying aluminium–silicon alloys, Acta Mater. 60 (2012) 3920–392.

DOI: 10.1016/j.actamat.2012.03.031

Google Scholar

[12] S.Q. Tang, J.X. Zhou, C.W. Tian, Y.S. Yang, Morphology modification of Mg2Si by Sr addition in Mg–4%Si alloy, Trans. Nonferrous Met. Soc. China 21 (2011) 1932–(1936).

DOI: 10.1016/s1003-6326(11)60952-7

Google Scholar

[13] L. Wu, F.S. Pan, M.B. Yang, R.J. Cheng, An investigation of second phases in as-cast AZ31 magnesium alloys with different Sr contents, J Mater Sci 48 (2013) 5456–5469.

DOI: 10.1007/s10853-013-7339-0

Google Scholar

[14] S.M. Liu, H. Diao, L.J. Chai, B. Song, On the microstructure and mechanical property of as-extruded Mg-Gd-Y-Zn alloy with Sr addition, Mater. Sci. Eng. A 679 (2017) 183–192.

DOI: 10.1016/j.msea.2016.10.016

Google Scholar

[15] J. Wang, Y.N. Zhang, P. Hudon, P. Chartrand, I.H. Jung, M. Medraj, Experimental determination of the phase equilibria in the Mg–Zn–Sr ternary system, J Mater. Sci. 50 (2015) 7636–7646.

DOI: 10.1007/s10853-015-9326-0

Google Scholar

[16] S.S. Wu, Y.Q. Liu, Principle of Materials Forming, Second edition, Wuhan, (2008).

Google Scholar