Materials Science Forum Vol. 941

Paper Title Page

Abstract: Additive manufacturing (AM) is a prominent technology in the industrial fields such as aerospace, medical, automotive and so on. Especially, selective laser melting (SLM) process is available to create three-dimensional complicated structures of various alloys such as stainless steel, titanium alloy, aluminium alloy, nickel-based superalloy and so on. And also, copper and copper alloys are used as a material for products with complicated shape, electrical components, and a heat exchanger because of having the high electrical conductivity and the high thermal conductivity. It is known that copper alloys show a good shape memory behaviour by adding Al, Ni and Zn. Especially, Cu-Al-Ni alloy shows a good shape memory properties at high temperature. However, it is difficult to fabricate high-density Cu-Al-Ni alloy by the SLM process. This is mainly because Cu-Al-Ni alloy has high elastic anisotropy and brittleness in polycrystalline state. In this research, the optimum fabrication condition of Cu-Al-Ni alloy by SLM process was investigated. The optimum laser power and scan speed were able to be found by evaluating the surface morphology, density and microstructure of the as-build specimens.The maximum density of the as-built specimen was 99.47%.
1570
Abstract: Selective laser melting (SLM) process has advantages in building free shape and simplification of manufacturing process. Since Ni-base superalloys have lower ductility at lower temperature, it is difficult to produce the parts by means of other process like forging. Therefore, SLM process has already applied to produce Ni-base superalloy parts. However, SLM process needs a long process time comparing to casting and machining. One of the means to solve this problem is an application of the high scanning speed condition under high power laser output. In this research, the optimum fabrication condition of Inconel 718 superalloy by SLM process under high power and high scanning speed condition was investigated. As a result, the optimum fabrication condition was obtained using the process map. However, the relative density of the as-built specimen fabricated under high power and high scanning speed condition is lower than that of the as-built specimen fabricated under the condition of 300 W and 600 mm/s. This may be mainly due to the occurrence of gas-pores by key-hole like phenomenon in melt pool and the increase of spattering at high power and high scanning speed condition.
1574
Abstract: Aging increases the yield strength of aged Mg-Zn alloys. The effect of aging on the stress required for twinning is examined using in-situ transmission based synchrotron X-ray diffraction. The as extruded material was aged at variety of temperatures for different times. It is found that increasing sample diameter (thickness) results in peak broadening. The data are analysed to establish the evolution of twin volume fraction with stress. Results indicated an increase in twinning stress at 10% twin volume fraction in aged samples in comparison with non-aged condition. The investigation showed a strong relation between the macroscopic yield stress and the twinning stress (at 10% twin volume fraction).
1579
Abstract: Nanostructured powder materials, or powders with increased amorphous ratio, can potentially lead to increased productivity during powder bed fusion, due to the hypothesis that nanostructured raw materials can be layer-sintered with lower specific energy, and consequently lower processing times when compared to commercial powders. Sintering of such materials can potentially be done faster, as compared to conventional powders. In addition, using nanostructured powders, or powders with high amorphous content, or even nanometric (nanosized particles) powders, can result in higher density and hardness values of the sintered part, using the same process parameters. The main issue with nanosized particles is their loss of flowability, which could be overcome by controlling the particle shape during manufacturing. This work presents our results concerning the manufacturing and characterization of titanium alloy powders, with potential use in additive manufacturing. The powders were manufactured using severe plastic deformation by mechanical milling from commercially available powders, with various rotation speeds, ball diameters, and milling periods, in order to obtain micrometric particles, but with nanometric or high amorphous content structures. The powders were further analyzed in terms of morphology, structure, and chemical composition.
1585
Abstract: Deformation twinning behaviors have been studied in high Ni alloys, Alloy 28 or Sanicro 28 and Alloy 625 at RT and at cryogenic temperature. The microstructures were evaluated using SEM-EBSD. Some constitutive approach has also been used in the discussion on the deformation twinning in high Ni-alloys. The results show that deformation twinning can occur in high Ni alloys depending on the chemical composition, strain range and stress conditions. TWIP can occur in the Ni based superalloy Alloy 625 at cryogenic temperature, which increases both strength and ductility. This is the first report of this phenomena for this alloy. Deformation twinning in high Ni alloys occurs heterogeneously in the material, depending on crystallographic parameters such as grain orientation and Schmid factor. Formation of deformation twins can lead to high texture in the material, which will contribute to the increase of strength. The mechanisms for the formation of deformation twins in high Ni alloys have been discussed.
1591
Abstract: The effect of a unique layered microstructure consisting of duplex-like region and equiaxed γ grains (γ bands) on the fatigue properties of Ti-48Al-2Cr-2Nb alloy bars fabricated by electron beam melting (EBM) at an angle (θ) of 90° between the building direction and cylinder (loading) axis was investigated focusing on the layered microstructure and test temperature. We found the room temperature (RT) fatigue strength of the alloy bars fabricated at θ = 90° is higher than that of the bars fabricated at θ = 0°. Moreover, it is comparable to that of the cast alloys with hot isostatic pressing (HIP) treatment in low-cycle fatigue life region, even without HIP treatment. The high fatigue strength of the bars at RT is attributed to the γ band, which acts as a resistance for crack propagation directed perpendicular to the γ band. On the other hand, the fatigue strength of the bars at θ = 90° is lower than that of the bars at θ = 0° in low-cycle fatigue life region at 1023 K. This is because the γ bands dose not act as a resistance for crack propagation at 1023 K. Although the bars at θ = 90° exhibits low fatigue strength in the region at 1023 K, that value is comparable to that of HIP-treated cast alloys due to the fine grain size, which is one of the features for the alloys fabricated by the EBM.
1597
Abstract: To fulfill the industrial demand of forged steels with high tensile properties and microstructural requirements coupled with reduced cost, the possibility to increase the properties of C-Mn steels by means of precipitation strengthening as achieved by micro-alloying (and without the addition of expensive elements such as Mo and Cr) has been evaluated. In order to do that, the effect of V addition has been exploited by means of metallurgical modelling followed by a laboratory ingot manufacturing. Heat treatment has been designed aimed to achieve the desired target tensile properties. Results show that ASTM A694 F70 grade requirements can bel fulfilled by 0.15% V addition and a proper heat treatment in a ferrite-pearlite microstructure, representative of a forged component. Results are discussed in comparison to those of a similar steel without V addition.
1603
Abstract: In this work, ultrasonic rheocasting was used to refine the microstructures of Mg alloys reinforced with long period stacking ordered (LPSO) phase. The semisolid slurries of Mg-Zn-Y and Mg-Ni-Y alloys were prepared by ultrasonic vibration (UV) and then formed by rheo-squeeze casting under high squeeze pressure (~ 400 MPa). The effects of UV and squeeze pressure on microstructure and mechanical properties of the Mg alloys were studied. The results reveal that UV and rheo-squeeze casting can significantly refine the LPSO structure and alpha-Mg matrix in Mg alloys, but they cannot change the phase compositions of the alloys or the type of LPSO phase. When the squeeze pressure is 400 MPa, the average thickness of LPSO phase is decreased, and the block LPSO structure is completed eliminated and uniformly distributed at the grain boundaries. Compared with the gravity cast alloys without UV, mechanical properties of the rheocast Mg alloys were enhanced and reached the maximums when the squeeze pressure was 400 MPa.
1607
Abstract: The Cr precipitation sequence in Cu-Cr-Zr-Ag alloy during the aging process at 450°C could be obtained by Transmission electron microscopy (TEM) and High-resolution transmission microscopy (HRTEM) in the study. The strengthening curve shows a unimodal type and the tensile strength trends to peak when the aged for 4h. The Cr phase transformation of Cu-Cr-Zr-Ag aged at 450°C is supersaturated solid sloution→G.P zones→fcc Cr phase→order fcc Cr phase→bcc Cr phase. The orientation relationship between bcc Cr precipitates and the matrix change from cube-on-cube to NW-OR.
1613
Abstract: Synthesis of Cu-Ni-Al alloy has been realized by powder metallurgy. Mechanical alloying was used to produce shape memory alloy consisting of Cu, x Al, and 5wt, % Ni to study the effect of using the aluminum ratios of 12.5, 13, and 13.5 wt.% and sintering temperature on the transformation temperature. The process to obtain the alloy has included cold compaction at 600 MPa, Ar Gas sintering at 950 °C, die forging at 900 °C under the pressure of 500 MPa, and heat treatment at 850 °C followed by water quenching. The results have shown that the proposed synthesis route could be used to obtain the alloy with proper transformation and metallurgical properties.
1618

Showing 261 to 270 of 419 Paper Titles