Materials Science Forum Vol. 941

Paper Title Page

Abstract: The hot workability of gamma titanium aluminide alloy, Ti-48Al-2V-2Nb, was assessed in the cast condition through a series of compression tests conducted over a range of temperatures (1000 to 1175 °C) and at the strain rate of 10 S-1. The mechanism of dynamics recrystallization has been investigated from SEM Z-contrast images and from the Electron backscattered diffraction EBSD as well. It has been observed that volume fraction of the recrystallized grains increases with increasing the deformation temperature. The major volume fraction of the recrystallized grains was observed in the shear band which was forming at an angle 45 ̊ with respect to the compression direction. The mechanism of breaking of the laths and the region of the dynamic recrystallization were also investigated from the SEM Z-contrast image and EBSD. The dynamic recrystallization occurred in the region of the broken laths and shear bands. The breaking of the laths was because of the kinking of the lamellae. The shear band, kinked lamellae and dynamic recrystallized region where all investigated simultaneously.
1391
Abstract: Despite extensive efforts to improve energy efficiency in the automotive sector, the use of light-weight aluminium alloys for car bodies is impeded by formability limitations. Although it is a known phenomenon that Al alloys increase their strength and ductility at very low temperatures, it has not been attempted to exploit this effect to increase their overall formability at an industrial scale. Over the last four years, the cryogenic sheet metal forming behaviour of Al-alloys was extensively investigated to establish a process robust enough for manufacturing automotive parts at an industrial level. Initial experiments include tensile tests at temperatures down to –196 °C for characterisation of 5xxx and 6xxx series Al alloys, providing the mechanical material data for numerical design simulations of sheet metal forming processes at cryogenic temperatures. Numerical simulations will not be discussed in this publication. Furthermore, the necessary hardware for cryogenic sheet metal forming was developed and finally resulted in a semi-automated small scale industrial production site. The production of a miniaturized B-Pillar was demonstrated for 5xxx and 6xxx alloys. Due to the part’s demanding geometry, defect-free deep drawing process is possible at cryogenic temperature only. These results demonstrate that the use of Al alloys could be extended beyond their current applications in cars components. For example, the overall formability of 5xxx series alloys nearly doubles compared to room temperature. This paper shall give an overview over our work in the field of cryogenic aluminium sheet metal forming within the last couple of years.
1397
Abstract: Ti6Al2Sn4Zr2Mo exhibits improved oxidation and creep properties compared to Ti6Al4V. Laser beam welding (LBW) is an approved process to receive narrow weld seams at high welding speeds with low heat input. Almost distortion free complex shaped structures can be joined with optimal parameters. For the optimisation of the LBW process the most relevant parameters are the welding speed, the laser input power and the gas shielding strategy. Using a fibre laser, the laser radiation is attenuated by a welding plume the so-called metal-vapour cloud (MVC). The MVC has a large influence on the laser input power. Therefore, an approach for reducing the MVC by optimising the shielding strategy using an additional gas flow in opposite welding direction is examined. Utilizing high-speed camera records, the effectiveness of the approach is assessed. Welded samples are evaluated by visual and radiographic inspection, metallographic assessment as well as microhardness measurements with regard to weld seam geometry, defects, microstructure and local mechanical properties. The obtained results are correlated to the used laser welding parameters.
1404
Abstract: The development of simulation tools for bridging different scales are essential for understanding complex joining processes. For precipitation hardening, the Kampmann-Wagner numerical model (KWN) is an important method to account for non-isothermal second phase precipitation. This model allows to describe nucleation, growth and coarsening of precipitation hardened aluminum alloys based on a size distribution for every phase which produces precipitations. In particular, this work investigates the performance of a KWN model by [1-3] for Al-Mg-Si-alloys. The model is compared against experimental data from isothermal heat treatments taken partially from [2]. Additionally, the model is used for investigation of the precipitation kinetics for a laser beam welding process, illustrating the time-dependent development of the different parameters related to the precipitation kinetics and the resulting yield strength.
1411
Abstract: Two main impediments are currenty discussed with respect to the industrial application of magnesium sheets. First, the low formability of magnesium sheets requires many rolling passes to roll cast slabs to final gauge, which leads, second, to high costs for the production of magnesium sheets. An alternative cost-saving process chain for magnesium sheets with enhanced properties is the feedstock production by twin roll casting (TRC). In the TRC process, liquid metal proceeds from a furnace over a pipe into a crucible and then flows between a pair of counter rotating, internally cooled rolls. The metal solidifies upon touch with the cooled rolls and gets rolled to a strip. This paper refers to the comparison of the two processing routes on the example of the aluminum-free magnesium alloy MX20 (2 wt% Mn and 0.5 wt% Ca). Both kinds of production processes like casting and twin roll casting have an influence on the microstructure and texture of the feedstock material for the subsequent rolling process. The paper reports on the results of casting and twin roll casting experiments of this alloy. Furthermore, rolling trials are conducted and the deformation behavior of the sheets are presented and discussed with respect to the developed microstructures and textures. The different morphology of precipitates in the cast and twin roll cast feedstock material is used to improve the ductility of the magnesium alloy MX20.
1418
Abstract: In the reverse hot strip rolling, the coiling and uncoiling of the strip leads to unstable conditions during the forming process. Both the temperature of the strip and the dwell time in the coil vary and influence the microstructure evolution passing in the coil during reverse rolling. It makes the design of this process difficult. Therefore, development of the temperature model for the reverse hot rolling including coiling and uncoiling was the main objective of the paper. The identification of the unknown parameters of the boundary conditions is proposed. Methods for their determination are discussed. The analysis is performed on example of the reverse hot rolling of the magnesium alloy AZ31. The resulting temperature model reveals good agreement with thermocouple and pyrometer measurements.
1424
Abstract: Due to their advantageous strength-weight ratio, good recyclability, excellent noise and vibration damping properties as well as excellent dent resistance, magnesium materials offer a variety of uses in modern lightweight structures. As a result, a comeback of magnesium alloys is to be seen in multiple industrial applications, especially in the automotive industry, as the potential for lightweight, cost-effective lightweight industrial construction associated with the lightest metallic engineering material helps to meet even stricter energy and environmental efficiency guidelines. Traditionally, casting processes have been the dominant magnesium manufacturing processes, but in the last decade, an increasing number of lightweight structural applications have been implemented with magnesium wrought alloys. In this paper, the current state of developments focusing the twin-roll casting (TRC) of semi-finished products of magnesium alloys will be presented. By reducing the number of process steps in combination with a unique microstructure, the near-net-shape TRC process offers new options to provide magnesium materials meeting current and future requirements for semi-finished products, constructions and moldings in terms of type, quantity and quality.
1431
Abstract: Multi-scale microstructure observation and three dimensional finite element thermal analysis of AlSi10Mg alloy fabricated by selective laser melting (SLM) process were demonstrated in order to understand the microstructure formation process during SLM fabrication. The unique hierarchically microstructures were observed: (1) the “fish scale” microstructure corresponding to a part of molten pool consists of columnar and equiaxed grains and (2) these grains contain a substructure of α-Al surrounded by Si particles. It is revealed that a supersaturated Si concentration due to the predicted rapid cooling rate on the order of 106 oC/s. In addition, the base temperature during the fabrication increases gradually with some peak temperature of each laser path as the laser scan has proceeded on a powder layer. Although the thermal changes cause no melting of the AlSi10Mg except directly fused region by selective laser so called molten pool, those are capable of causing precipitation and/or clustering.
1437
Abstract: This work deals with the analysis and modelling of the microstructural evolution of the metastable titanium alloy Ti-5Al-5V-5Mo-3Cr during hot deformation up to moderate and large strains. Experimental flow curves and deformed samples are obtained by hot compression and hot torsion tests using a Gleeble ® 3800 device. The samples are deformed above and below the beta transus temperature and in a wide range of strain rates. Microstructures are characterized after deformation and in-situ water quenching using light optical and scanning electron microscopy and electron back scattered diffraction (EBSD). Dynamic recovery of the beta phase is found to be the main deformation mechanism up to moderated strains. By increasing the strain, continuous dynamic recrystallization (cDRX) is confirmed by the progressive conversion of low angle boundaries into high-angle boundaries. Alpha phase plays a secondary role in the deformation of the material by pinning the movement of beta high angle grain boundaries (HAGB). The evolution of the microstructure is modelled using dislocation density as internal variable in the single β field.
1443
Abstract: Friction stir diffusion bonding (FSDB) has been applied to lap dissimilar foils joints of aluminum alloy on top of commercial purity (CP) titanium. FSDB of the foils was successfully performed through stirring only the upper aluminum foil by the air spindle with an extremely-high rotation speed of 105,000 rpm. By using smooth surface of the tool tip, FSDB with micro indentation less than or equal 10μm could be carried out to improve the surface condition of the joint and the indentation depth required for joining was reduced. The material flow of the upper aluminum alloy foil in the FSDB was investigated by deposited platinum-palladium as the tracer material on the surface of the lower titanium foil. Then it was confirmed that the vestiges of vigorous stirring appeared in the region given at a distance from tool center while little vestiges was found in the other region. These regions seemed to be bounded by a radius of about 0.6 mm from the tool center. Moreover, the bonding strength distribution as a function of the distance from the tool center was likely correspondent to the stirring state.
1450

Showing 231 to 240 of 419 Paper Titles