Precipitation Kinetics of AA6082: An Experimental and Numerical Investigation

Article Preview

Abstract:

The development of simulation tools for bridging different scales are essential for understanding complex joining processes. For precipitation hardening, the Kampmann-Wagner numerical model (KWN) is an important method to account for non-isothermal second phase precipitation. This model allows to describe nucleation, growth and coarsening of precipitation hardened aluminum alloys based on a size distribution for every phase which produces precipitations. In particular, this work investigates the performance of a KWN model by [1-3] for Al-Mg-Si-alloys. The model is compared against experimental data from isothermal heat treatments taken partially from [2]. Additionally, the model is used for investigation of the precipitation kinetics for a laser beam welding process, illustrating the time-dependent development of the different parameters related to the precipitation kinetics and the resulting yield strength.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1411-1417

Citation:

Online since:

December 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] O. Myhr and Ø. Grong, Modelling of non-isothermal transformations in alloys containing a particle distribution,, Acta Mater., vol. 48, no. 7, pp.1605-1615, (2000).

DOI: 10.1016/s1359-6454(99)00435-8

Google Scholar

[2] O. Myhr, Ø. Grong, and S. Andersen, Modelling of the age hardening behaviour of Al–Mg–Si alloys,, Acta Mater., vol. 49, no. 1, pp.65-75, (2001).

DOI: 10.1016/s1359-6454(00)00301-3

Google Scholar

[3] O. Myhr, Ø. Grong, H. Fjær, and C. Marioara, Modelling of the microstructure and strength evolution in Al–Mg–Si alloys during multistage thermal processing,, Acta Mater., vol. 52, no. 17, pp.4997-5008, (2004).

DOI: 10.1016/j.actamat.2004.07.002

Google Scholar

[4] R. Wagner, R. Kampmann, and P. W. Voorhees, Homogeneous Second‐Phase Precipitation,, in Phase Transformations in Materials: Wiley-VCH, 1991, pp.310-407.

DOI: 10.1002/352760264x.ch5

Google Scholar

[5] M. Perez, Gibbs–Thomson effects in phase transformations,, Scr. Mater., vol. 52, no. 8, pp.709-712, (2005).

Google Scholar

[6] P. Binkele and S. Schmauder, An atomistic Monte Carlo simulation of precipitation in a binary system,, Zeitschrift für Metallkunde, vol. 94, no. 8, pp.858-863, (2003).

DOI: 10.3139/146.030858

Google Scholar

[7] B. Holmedal, E. Osmundsen, and Q. Du, Precipitation of Non-Spherical Particles in Aluminum Alloys Part I: Generalization of the Kampmann–Wagner Numerical Model,, Metall. Mater. Trans., vol. 47, no. 1, pp.581-588, January 01 (2016).

DOI: 10.1007/s11661-015-3197-5

Google Scholar

[8] Q. Du, B. Holmedal, J. Friis, and C. D. Marioara, Precipitation of Non-spherical Particles in Aluminum Alloys Part II: Numerical Simulation and Experimental Characterization During Aging Treatment of an Al-Mg-Si Alloy,, Metall. Mater. Trans., vol. 47, no. 1, pp.589-599, January 01 (2016).

DOI: 10.1007/s11661-015-3196-6

Google Scholar

[9] M. Perez, M. Dumont, and D. Acevedo-Reyes, Implementation of classical nucleation and growth theories for precipitation,, Acta Mater., vol. 56, no. 9, pp.2119-2132, (2008).

DOI: 10.1016/j.actamat.2007.12.050

Google Scholar

[10] S. Esmaeili, D. Lloyd, and W. Poole, Modeling of precipitation hardening for the naturally aged Al-Mg-Si-Cu alloy AA6111,, Acta Mater., vol. 51, no. 12, pp.3467-3481, (2003).

DOI: 10.1016/s1359-6454(03)00167-8

Google Scholar

[11] A. Falahati, E. Povoden-Karadeniz, P. Lang, P. Warczok, and E. Kozeschnik, Thermo-kinetic computer simulation of differential scanning calorimetry curves of AlMgSi alloys,, Int. J. Mater. Res., vol. 101, no. 9, pp.1089-1096, (2010).

DOI: 10.3139/146.110396

Google Scholar

[12] D. Bardel et al., Coupled precipitation and yield strength modelling for non-isothermal treatments of a 6061 aluminium alloy,, Acta Mater., vol. 62, pp.129-140, (2014).

DOI: 10.1016/j.actamat.2013.09.041

Google Scholar

[13] Q. Du, K. Tang, C. D. Marioara, S. J. Andersen, B. Holmedal, and R. Holmestad, Modeling over-ageing in Al-Mg-Si alloys by a multi-phase CALPHAD-coupled Kampmann-Wagner Numerical model,, Acta Mater., vol. 122, pp.178-186, (2017).

DOI: 10.1016/j.actamat.2016.09.052

Google Scholar

[14] O. R. Myhr, Ø. Grong, and K. O. Pedersen, A combined precipitation, yield strength, and work hardening model for Al-Mg-Si alloys,, Metall. Mater. Trans., vol. 41, no. 9, pp.2276-2289, (2010).

DOI: 10.1007/s11661-010-0258-7

Google Scholar

[15] B. Reppich, Particle strengthening,, in Materials Science and Technology: Wiley-VCH, 1993, pp.311-357.

Google Scholar

[16] A. Ardell, Precipitation hardening,, Metall. Mater. Trans., vol. 16, no. 12, pp.2131-2165, (1985).

Google Scholar

[17] W. Anderson, Precipitation from solid solution,, ASM, Metals Park, Ohio, (1959).

Google Scholar

[18] E. Povoden-Karadeniz, P. Lang, P. Warczok, A. Falahati, W. Jun, and E. Kozeschnik, CALPHAD modeling of metastable phases in the Al–Mg–Si system,, Calphad, vol. 43, pp.94-104, (2013).

DOI: 10.1016/j.calphad.2013.03.004

Google Scholar