[1]
O. Myhr and Ø. Grong, Modelling of non-isothermal transformations in alloys containing a particle distribution,, Acta Mater., vol. 48, no. 7, pp.1605-1615, (2000).
DOI: 10.1016/s1359-6454(99)00435-8
Google Scholar
[2]
O. Myhr, Ø. Grong, and S. Andersen, Modelling of the age hardening behaviour of Al–Mg–Si alloys,, Acta Mater., vol. 49, no. 1, pp.65-75, (2001).
DOI: 10.1016/s1359-6454(00)00301-3
Google Scholar
[3]
O. Myhr, Ø. Grong, H. Fjær, and C. Marioara, Modelling of the microstructure and strength evolution in Al–Mg–Si alloys during multistage thermal processing,, Acta Mater., vol. 52, no. 17, pp.4997-5008, (2004).
DOI: 10.1016/j.actamat.2004.07.002
Google Scholar
[4]
R. Wagner, R. Kampmann, and P. W. Voorhees, Homogeneous Second‐Phase Precipitation,, in Phase Transformations in Materials: Wiley-VCH, 1991, pp.310-407.
DOI: 10.1002/352760264x.ch5
Google Scholar
[5]
M. Perez, Gibbs–Thomson effects in phase transformations,, Scr. Mater., vol. 52, no. 8, pp.709-712, (2005).
Google Scholar
[6]
P. Binkele and S. Schmauder, An atomistic Monte Carlo simulation of precipitation in a binary system,, Zeitschrift für Metallkunde, vol. 94, no. 8, pp.858-863, (2003).
DOI: 10.3139/146.030858
Google Scholar
[7]
B. Holmedal, E. Osmundsen, and Q. Du, Precipitation of Non-Spherical Particles in Aluminum Alloys Part I: Generalization of the Kampmann–Wagner Numerical Model,, Metall. Mater. Trans., vol. 47, no. 1, pp.581-588, January 01 (2016).
DOI: 10.1007/s11661-015-3197-5
Google Scholar
[8]
Q. Du, B. Holmedal, J. Friis, and C. D. Marioara, Precipitation of Non-spherical Particles in Aluminum Alloys Part II: Numerical Simulation and Experimental Characterization During Aging Treatment of an Al-Mg-Si Alloy,, Metall. Mater. Trans., vol. 47, no. 1, pp.589-599, January 01 (2016).
DOI: 10.1007/s11661-015-3196-6
Google Scholar
[9]
M. Perez, M. Dumont, and D. Acevedo-Reyes, Implementation of classical nucleation and growth theories for precipitation,, Acta Mater., vol. 56, no. 9, pp.2119-2132, (2008).
DOI: 10.1016/j.actamat.2007.12.050
Google Scholar
[10]
S. Esmaeili, D. Lloyd, and W. Poole, Modeling of precipitation hardening for the naturally aged Al-Mg-Si-Cu alloy AA6111,, Acta Mater., vol. 51, no. 12, pp.3467-3481, (2003).
DOI: 10.1016/s1359-6454(03)00167-8
Google Scholar
[11]
A. Falahati, E. Povoden-Karadeniz, P. Lang, P. Warczok, and E. Kozeschnik, Thermo-kinetic computer simulation of differential scanning calorimetry curves of AlMgSi alloys,, Int. J. Mater. Res., vol. 101, no. 9, pp.1089-1096, (2010).
DOI: 10.3139/146.110396
Google Scholar
[12]
D. Bardel et al., Coupled precipitation and yield strength modelling for non-isothermal treatments of a 6061 aluminium alloy,, Acta Mater., vol. 62, pp.129-140, (2014).
DOI: 10.1016/j.actamat.2013.09.041
Google Scholar
[13]
Q. Du, K. Tang, C. D. Marioara, S. J. Andersen, B. Holmedal, and R. Holmestad, Modeling over-ageing in Al-Mg-Si alloys by a multi-phase CALPHAD-coupled Kampmann-Wagner Numerical model,, Acta Mater., vol. 122, pp.178-186, (2017).
DOI: 10.1016/j.actamat.2016.09.052
Google Scholar
[14]
O. R. Myhr, Ø. Grong, and K. O. Pedersen, A combined precipitation, yield strength, and work hardening model for Al-Mg-Si alloys,, Metall. Mater. Trans., vol. 41, no. 9, pp.2276-2289, (2010).
DOI: 10.1007/s11661-010-0258-7
Google Scholar
[15]
B. Reppich, Particle strengthening,, in Materials Science and Technology: Wiley-VCH, 1993, pp.311-357.
Google Scholar
[16]
A. Ardell, Precipitation hardening,, Metall. Mater. Trans., vol. 16, no. 12, pp.2131-2165, (1985).
Google Scholar
[17]
W. Anderson, Precipitation from solid solution,, ASM, Metals Park, Ohio, (1959).
Google Scholar
[18]
E. Povoden-Karadeniz, P. Lang, P. Warczok, A. Falahati, W. Jun, and E. Kozeschnik, CALPHAD modeling of metastable phases in the Al–Mg–Si system,, Calphad, vol. 43, pp.94-104, (2013).
DOI: 10.1016/j.calphad.2013.03.004
Google Scholar