Simulation of Thermal Phenomena in Reverse Strip-Rolling Process

Article Preview

Abstract:

In the reverse hot strip rolling, the coiling and uncoiling of the strip leads to unstable conditions during the forming process. Both the temperature of the strip and the dwell time in the coil vary and influence the microstructure evolution passing in the coil during reverse rolling. It makes the design of this process difficult. Therefore, development of the temperature model for the reverse hot rolling including coiling and uncoiling was the main objective of the paper. The identification of the unknown parameters of the boundary conditions is proposed. Methods for their determination are discussed. The analysis is performed on example of the reverse hot rolling of the magnesium alloy AZ31. The resulting temperature model reveals good agreement with thermocouple and pyrometer measurements.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1424-1430

Citation:

Online since:

December 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Devadas, I.V. Samarasekera, Heat transfer during hot rolling of steel strip, Ironmaking and Steelmaking 13 (1986) 311–321.

Google Scholar

[2] C. Devadas, I.V. Samarasekera, E.B. Hawbolt, The thermal and metallurgical state of steel strip during hot rolling: Part I. Characterization of heat transfer, MTA 22 (1991) 307–319.

DOI: 10.1007/bf02656800

Google Scholar

[3] M. Pietrzyk, J.G. Lenard, A study of thermal-mechanical modeling of hot flat rolling, Journal of Materials Shaping Technology 7 (1989) 117–126.

DOI: 10.1007/bf02833778

Google Scholar

[4] M. Pietrzyk, J.G. Lenard, Thermal-mechanical modelling of the flat rolling process, Springer, Berlin, (1991).

DOI: 10.1007/978-3-642-84325-9_4

Google Scholar

[5] C.O. Hlady, J.K. Brimacombe, I.V. Samarasekera, E.B. Hawbolt, Heat transfer in the hot rolling of metals, MMTB 26 (1995) 1019–1027.

DOI: 10.1007/bf02654104

Google Scholar

[6] N. Hatta, H. Takuda, H. Fujimoto, M. Ueda, Thermal calculation of the hot rolling process of sheet aluminium, Archive of Applied Mechanics 62 (1992) 435–446.

DOI: 10.1007/bf00810234

Google Scholar

[7] J.J.M. Too, On numerical modelling of hot rolling of metals, International journal for numerical methods in engineering 30 (1990) 1699–1718.

DOI: 10.1002/nme.1620300822

Google Scholar

[8] X. Duan, T. Sheppard, Prediction of temperature evolution by FEM during multi-pass hot flat rolling of aluminium alloys, Modelling and Simulation in Materials Science and Engineering 9 (2001) 525–538.

DOI: 10.1088/0965-0393/9/6/305

Google Scholar

[9] S. Serajzadeh, H. Mirbagheri, A. Karimi Taheri, Modelling the temperature distribution and microstructural changes during hot rod rolling of a low carbon steel, Journal of Materials Processing Technology 125-126 (2002) 89–96.

DOI: 10.1016/s0924-0136(02)00322-9

Google Scholar

[10] S. Serajzadeh, A.K. Taheri, F. Mucciardi, Prediction of temperature distribution in the hot rolling of slabs, Modelling and Simulation in Materials Science and Engineering 10 (2002) 185–203.

DOI: 10.1088/0965-0393/10/2/306

Google Scholar

[11] J. Kim, J. Lee, S.M. Hwang, An analytical model for the prediction of strip temperatures in hot strip rolling, International Journal of Heat and Mass Transfer 52 (2009) 1864–1874.

DOI: 10.1016/j.ijheatmasstransfer.2008.10.013

Google Scholar

[12] C.H. Moon, Y. Lee, An approximate method for computing the temperature distribution over material thickness during hot flat rolling, International Journal of Heat and Mass Transfer 55 (2012) 310–315.

DOI: 10.1016/j.ijheatmasstransfer.2011.09.019

Google Scholar

[13] K. Speicher, A. Steinboeck, D. Wild, T. Kiefer, A. Kugi, An integrated thermal model of hot rolling, Mathematical and Computer Modelling of Dynamical Systems 20 (2013) 66–86.

DOI: 10.1080/13873954.2013.809364

Google Scholar

[14] A. Milenin, R. Kuziak, M. Lech-Grega, A. Chochorowski, S. Witek, M. Pietrzyk, Numerical modeling and experimental identification of residual stresses in hot-rolled strips, Archives of Civil and Mechanical Engineering 16 (2016) 125–134.

DOI: 10.1016/j.acme.2015.08.002

Google Scholar

[15] N. Troyani, L. Montano, M. Avrami, Numerical modelling of thermal evolution in hot metal coiling, Revista de Metalurgia (Madrid) SPEC. VOL (2005) 488–492.

DOI: 10.3989/revmetalm.2005.v41.iextra.1082

Google Scholar

[16] L. Neumann, Through-process modelling of aluminium as a tool for the prediction of plastic anisotropy using microstructure models. Zugl.: Aachen, Techn. Hochsch., Diss., 2006, Shaker, Aachen, (2007).

Google Scholar

[17] Y.-q. Wang, L. Li, X.-c. Yan, Y.-x. Luo, L. Wu, Modeling of Stress Distribution During Strip Coiling Process, Journal of Iron and Steel Research, International 19 (2012) 6–11.

DOI: 10.1016/s1006-706x(12)60132-0

Google Scholar

[18] A.A. Tseng, Thermal modeling of roll and strip interface in rolling processes: Part 1 - Review, Numerical Heat Transfer; Part A: Applications 35 (1999) 115–133.

DOI: 10.1080/104077899275281

Google Scholar

[19] M.N. Özişik, Heat conduction, third. ed., Wiley, New York, (2012).

Google Scholar

[20] M. Ullmann, M. Oswald, S. Gorelova, R. Kawalla, H.-P. Vogt, Strip rolling technology of magnesium alloys, steel research international (2012) 855–858.

Google Scholar

[21] A. Nam, U. Prüfert, M. Eiermann, R. Kawalla, Modelling the Temperature Evolution During Hot Reversing Strip Rolling of Magnesium Alloys, MSF 854 (2016) 140–145.

DOI: 10.4028/www.scientific.net/msf.854.140

Google Scholar

[22] U. Prüfert, OOPDE - An object oriented approach to finite elements in MATLAB, Quickstart Guide, on http://www.mathe.tu-freiberg.de/nmo/mitarbeiter/uwe-pruefert/software, (2015).

Google Scholar

[23] Y.A. Cengel, A.J. Ghajar, Heat and mass transfer (a practical approach, SI version), McGraw-Hill Education, (2011).

Google Scholar

[24] A. Nam, U. Prüfert, M. Pietrzyk, R. Kawalla, Coil model for magnesium alloy strips and its heat transfer analysis. (submitted), Procedia Manufacturing (2018).

DOI: 10.1016/j.promfg.2018.07.193

Google Scholar

[25] Z. Malinowski, J.G. Lenard, M.E. Davies, A study of the heat-transfer coefficient as a function of temperature and pressure, Journal of Materials Processing Technology 41 (1994) 125–142.

DOI: 10.1016/0924-0136(94)90057-4

Google Scholar

[26] A. Hensel (Ed.), Technologie der Metallformung: Eisen- und Nichteisenwerkstoffe, first. Aufl., Dt. Verl. für Grundstoffindustrie, Leipzig, (1990).

Google Scholar

[27] A. Nam, U. Prufert, R. Kawalla, Thermal Modelling for Production of Hot Strip of Magnesium Alloy, Journal of Machine Engineering 14 (2014) 29–38.

Google Scholar

[28] A. Nam, R. Kawalla, A. Zinoviev, Y.A. Erisov, U. Prüfert, M. Eiermann, Temperature Validation of 3D Model for the Reversing Hot Rolling in Connection with a Coil Model, KEM 746 (2017) 132–137.

DOI: 10.4028/www.scientific.net/kem.746.132

Google Scholar

[29] A. Nam, U. Prüfert, M. Eiermann, R. Kawalla, Numerical Modeling of Thermal Evolution in Hot Strip Rolling of Magnesium Alloy, KEM 651-653 (2015) 207–212.

DOI: 10.4028/www.scientific.net/kem.651-653.207

Google Scholar

[30] M. Pietrzyk, Ł. Madej, L. Rauch, D. Szeliga, Computational materials engineering: Achieving high accuracy and efficiency in metals processing simulations, Elsevier, Amsterdam, (2015).

DOI: 10.1016/b978-0-12-416707-0.00006-5

Google Scholar