[1]
C. Devadas, I.V. Samarasekera, Heat transfer during hot rolling of steel strip, Ironmaking and Steelmaking 13 (1986) 311–321.
Google Scholar
[2]
C. Devadas, I.V. Samarasekera, E.B. Hawbolt, The thermal and metallurgical state of steel strip during hot rolling: Part I. Characterization of heat transfer, MTA 22 (1991) 307–319.
DOI: 10.1007/bf02656800
Google Scholar
[3]
M. Pietrzyk, J.G. Lenard, A study of thermal-mechanical modeling of hot flat rolling, Journal of Materials Shaping Technology 7 (1989) 117–126.
DOI: 10.1007/bf02833778
Google Scholar
[4]
M. Pietrzyk, J.G. Lenard, Thermal-mechanical modelling of the flat rolling process, Springer, Berlin, (1991).
DOI: 10.1007/978-3-642-84325-9_4
Google Scholar
[5]
C.O. Hlady, J.K. Brimacombe, I.V. Samarasekera, E.B. Hawbolt, Heat transfer in the hot rolling of metals, MMTB 26 (1995) 1019–1027.
DOI: 10.1007/bf02654104
Google Scholar
[6]
N. Hatta, H. Takuda, H. Fujimoto, M. Ueda, Thermal calculation of the hot rolling process of sheet aluminium, Archive of Applied Mechanics 62 (1992) 435–446.
DOI: 10.1007/bf00810234
Google Scholar
[7]
J.J.M. Too, On numerical modelling of hot rolling of metals, International journal for numerical methods in engineering 30 (1990) 1699–1718.
DOI: 10.1002/nme.1620300822
Google Scholar
[8]
X. Duan, T. Sheppard, Prediction of temperature evolution by FEM during multi-pass hot flat rolling of aluminium alloys, Modelling and Simulation in Materials Science and Engineering 9 (2001) 525–538.
DOI: 10.1088/0965-0393/9/6/305
Google Scholar
[9]
S. Serajzadeh, H. Mirbagheri, A. Karimi Taheri, Modelling the temperature distribution and microstructural changes during hot rod rolling of a low carbon steel, Journal of Materials Processing Technology 125-126 (2002) 89–96.
DOI: 10.1016/s0924-0136(02)00322-9
Google Scholar
[10]
S. Serajzadeh, A.K. Taheri, F. Mucciardi, Prediction of temperature distribution in the hot rolling of slabs, Modelling and Simulation in Materials Science and Engineering 10 (2002) 185–203.
DOI: 10.1088/0965-0393/10/2/306
Google Scholar
[11]
J. Kim, J. Lee, S.M. Hwang, An analytical model for the prediction of strip temperatures in hot strip rolling, International Journal of Heat and Mass Transfer 52 (2009) 1864–1874.
DOI: 10.1016/j.ijheatmasstransfer.2008.10.013
Google Scholar
[12]
C.H. Moon, Y. Lee, An approximate method for computing the temperature distribution over material thickness during hot flat rolling, International Journal of Heat and Mass Transfer 55 (2012) 310–315.
DOI: 10.1016/j.ijheatmasstransfer.2011.09.019
Google Scholar
[13]
K. Speicher, A. Steinboeck, D. Wild, T. Kiefer, A. Kugi, An integrated thermal model of hot rolling, Mathematical and Computer Modelling of Dynamical Systems 20 (2013) 66–86.
DOI: 10.1080/13873954.2013.809364
Google Scholar
[14]
A. Milenin, R. Kuziak, M. Lech-Grega, A. Chochorowski, S. Witek, M. Pietrzyk, Numerical modeling and experimental identification of residual stresses in hot-rolled strips, Archives of Civil and Mechanical Engineering 16 (2016) 125–134.
DOI: 10.1016/j.acme.2015.08.002
Google Scholar
[15]
N. Troyani, L. Montano, M. Avrami, Numerical modelling of thermal evolution in hot metal coiling, Revista de Metalurgia (Madrid) SPEC. VOL (2005) 488–492.
DOI: 10.3989/revmetalm.2005.v41.iextra.1082
Google Scholar
[16]
L. Neumann, Through-process modelling of aluminium as a tool for the prediction of plastic anisotropy using microstructure models. Zugl.: Aachen, Techn. Hochsch., Diss., 2006, Shaker, Aachen, (2007).
Google Scholar
[17]
Y.-q. Wang, L. Li, X.-c. Yan, Y.-x. Luo, L. Wu, Modeling of Stress Distribution During Strip Coiling Process, Journal of Iron and Steel Research, International 19 (2012) 6–11.
DOI: 10.1016/s1006-706x(12)60132-0
Google Scholar
[18]
A.A. Tseng, Thermal modeling of roll and strip interface in rolling processes: Part 1 - Review, Numerical Heat Transfer; Part A: Applications 35 (1999) 115–133.
DOI: 10.1080/104077899275281
Google Scholar
[19]
M.N. Özişik, Heat conduction, third. ed., Wiley, New York, (2012).
Google Scholar
[20]
M. Ullmann, M. Oswald, S. Gorelova, R. Kawalla, H.-P. Vogt, Strip rolling technology of magnesium alloys, steel research international (2012) 855–858.
Google Scholar
[21]
A. Nam, U. Prüfert, M. Eiermann, R. Kawalla, Modelling the Temperature Evolution During Hot Reversing Strip Rolling of Magnesium Alloys, MSF 854 (2016) 140–145.
DOI: 10.4028/www.scientific.net/msf.854.140
Google Scholar
[22]
U. Prüfert, OOPDE - An object oriented approach to finite elements in MATLAB, Quickstart Guide, on http://www.mathe.tu-freiberg.de/nmo/mitarbeiter/uwe-pruefert/software, (2015).
Google Scholar
[23]
Y.A. Cengel, A.J. Ghajar, Heat and mass transfer (a practical approach, SI version), McGraw-Hill Education, (2011).
Google Scholar
[24]
A. Nam, U. Prüfert, M. Pietrzyk, R. Kawalla, Coil model for magnesium alloy strips and its heat transfer analysis. (submitted), Procedia Manufacturing (2018).
DOI: 10.1016/j.promfg.2018.07.193
Google Scholar
[25]
Z. Malinowski, J.G. Lenard, M.E. Davies, A study of the heat-transfer coefficient as a function of temperature and pressure, Journal of Materials Processing Technology 41 (1994) 125–142.
DOI: 10.1016/0924-0136(94)90057-4
Google Scholar
[26]
A. Hensel (Ed.), Technologie der Metallformung: Eisen- und Nichteisenwerkstoffe, first. Aufl., Dt. Verl. für Grundstoffindustrie, Leipzig, (1990).
Google Scholar
[27]
A. Nam, U. Prufert, R. Kawalla, Thermal Modelling for Production of Hot Strip of Magnesium Alloy, Journal of Machine Engineering 14 (2014) 29–38.
Google Scholar
[28]
A. Nam, R. Kawalla, A. Zinoviev, Y.A. Erisov, U. Prüfert, M. Eiermann, Temperature Validation of 3D Model for the Reversing Hot Rolling in Connection with a Coil Model, KEM 746 (2017) 132–137.
DOI: 10.4028/www.scientific.net/kem.746.132
Google Scholar
[29]
A. Nam, U. Prüfert, M. Eiermann, R. Kawalla, Numerical Modeling of Thermal Evolution in Hot Strip Rolling of Magnesium Alloy, KEM 651-653 (2015) 207–212.
DOI: 10.4028/www.scientific.net/kem.651-653.207
Google Scholar
[30]
M. Pietrzyk, Ł. Madej, L. Rauch, D. Szeliga, Computational materials engineering: Achieving high accuracy and efficiency in metals processing simulations, Elsevier, Amsterdam, (2015).
DOI: 10.1016/b978-0-12-416707-0.00006-5
Google Scholar