[1]
E. G. Welsch, R.Boyer, Materials Properties Handbook: Titanium Alloys, ASM International, Materials Park, (1998).
Google Scholar
[2]
R. Gaddam, B. Sefer, R. Pederson, M.L. Antti, Oxidation and alpha-case formation in Ti-6Al-2Sn-4Zr-2Mo alloy, Mater. Charact. 99 (2015) 166–174.
DOI: 10.1016/j.matchar.2014.11.023
Google Scholar
[3]
M. Peters, C. Leyens, Titan und Titanlegierungen, WILEY-VCH, Weinheim, (2002).
Google Scholar
[4]
C. Dawes, Laser welding, a practical guide, Abington Publishing, Cambridge, (1992).
Google Scholar
[5]
E. Akman, A. Demir, T. Canel, T. Sinmazçelik, Laser welding of Ti6Al4V titanium alloys, J. Mater. Process. Technol. 209 (2009) 3705–3713.
DOI: 10.1016/j.jmatprotec.2008.08.026
Google Scholar
[6]
S.A. Uspenskiy, V.N. Petrovskiy, D.P. Bykovskiy, V.D. Mironov, N.M. Prokopova, E. V Tret'yakov, Spectral diagnostics of a vapor-plasma plume produced during welding titanium with a high-power ytterbium fiber laser, J. Phys. Conf. Ser. 594 (2015) 12033.
DOI: 10.1088/1742-6596/594/1/012033
Google Scholar
[7]
P.Y. Shcheglov, S.A. Uspenskiy, A. V Gumenyuk, V.N. Petrovskiy, M. Rethmeier, V.M. Yermachenko, Plume attenuation of laser radiation during high power fiber laser welding, Laser Phys. Lett. 8 (2011) 475–480. doi:DOI 10.1002/lapl.201110010.
DOI: 10.1002/lapl.201110010
Google Scholar
[8]
G. Casalino, M. Mortello, S.L. Campanelli, Ytterbium fiber laser welding of Ti6Al4V alloy, J. Manuf. Process. 20 (2015) 250–256.
DOI: 10.1016/j.jmapro.2015.07.003
Google Scholar
[9]
M.Y. Krasnoperov, R.R.G.M. Pieters, I.M. Richardson, Weld pool geometry during keyhole laser welding of thin steel sheets, Sci. Technol. Weld. Join. 9 (2004) 501–506.
DOI: 10.1179/136217104225021733
Google Scholar
[10]
S. Pang, X. Chen, X. Shao, S. Gong, J. Xiao, Dynamics of vapor plume in transient keyhole during laser welding of stainless steel: Local evaporation, plume swing and gas entrapment into porosity, Opt. Lasers Eng. 82 (2016) 28–40.
DOI: 10.1016/j.optlaseng.2016.01.019
Google Scholar
[11]
C. Panwisawas, B. Perumal, R.M. Ward, N. Turner, R.P. Turner, J.W. Brooks, H.C. Basoalto, Keyhole formation and thermal fluid flow-induced porosity during laser fusion welding in titanium alloys: Experimental and modelling, Acta Mater. 126 (2017) 251–263.
DOI: 10.1016/j.actamat.2016.12.062
Google Scholar
[12]
F. Fomin, N. Kashaev, Influence of Porosity on the High Cycle Fatigue Behaviour of Laser Beam Welded Ti-6Al-4V Butt Joints, Procedia Struct. Integr. 7 (2017) 415–422.
DOI: 10.1016/j.prostr.2017.11.107
Google Scholar
[13]
H.L. Wei, J.W. Elmer, T. DebRoy, Crystal growth during keyhole mode laser welding, Acta Mater. 133 (2017) 10–20.
DOI: 10.1016/j.actamat.2017.04.074
Google Scholar
[14]
S.R.K. Rao, G.M. Reddy, M. Kamaraj, K.P. Rao, Grain refinement through arc manipulation techniques in Al-Cu alloy GTA welds, Mater. Sci. Eng. A. 404 (2005) 227–234.
DOI: 10.1016/j.msea.2005.05.080
Google Scholar
[15]
S. Kou, Welding Metallurgy, second ed., Hoboken, NJ, (2003).
Google Scholar
[16]
O. Jin, S. Mall, Effects of microstructure on short crack growth behavior of Ti-6Al-2Sn-4Zr-2Mo-0.1Si alloy, Mater. Sci. Eng. A. 359 (2003) 356–367.
DOI: 10.1016/s0921-5093(03)00377-0
Google Scholar