Development of an Optimised Shielding Strategy for Laser Beam Welding of Ti6Al2Sn4Zr2Mo

Article Preview

Abstract:

Ti6Al2Sn4Zr2Mo exhibits improved oxidation and creep properties compared to Ti6Al4V. Laser beam welding (LBW) is an approved process to receive narrow weld seams at high welding speeds with low heat input. Almost distortion free complex shaped structures can be joined with optimal parameters. For the optimisation of the LBW process the most relevant parameters are the welding speed, the laser input power and the gas shielding strategy. Using a fibre laser, the laser radiation is attenuated by a welding plume the so-called metal-vapour cloud (MVC). The MVC has a large influence on the laser input power. Therefore, an approach for reducing the MVC by optimising the shielding strategy using an additional gas flow in opposite welding direction is examined. Utilizing high-speed camera records, the effectiveness of the approach is assessed. Welded samples are evaluated by visual and radiographic inspection, metallographic assessment as well as microhardness measurements with regard to weld seam geometry, defects, microstructure and local mechanical properties. The obtained results are correlated to the used laser welding parameters.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1404-1410

Citation:

Online since:

December 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. G. Welsch, R.Boyer, Materials Properties Handbook: Titanium Alloys, ASM International, Materials Park, (1998).

Google Scholar

[2] R. Gaddam, B. Sefer, R. Pederson, M.L. Antti, Oxidation and alpha-case formation in Ti-6Al-2Sn-4Zr-2Mo alloy, Mater. Charact. 99 (2015) 166–174.

DOI: 10.1016/j.matchar.2014.11.023

Google Scholar

[3] M. Peters, C. Leyens, Titan und Titanlegierungen, WILEY-VCH, Weinheim, (2002).

Google Scholar

[4] C. Dawes, Laser welding, a practical guide, Abington Publishing, Cambridge, (1992).

Google Scholar

[5] E. Akman, A. Demir, T. Canel, T. Sinmazçelik, Laser welding of Ti6Al4V titanium alloys, J. Mater. Process. Technol. 209 (2009) 3705–3713.

DOI: 10.1016/j.jmatprotec.2008.08.026

Google Scholar

[6] S.A. Uspenskiy, V.N. Petrovskiy, D.P. Bykovskiy, V.D. Mironov, N.M. Prokopova, E. V Tret'yakov, Spectral diagnostics of a vapor-plasma plume produced during welding titanium with a high-power ytterbium fiber laser, J. Phys. Conf. Ser. 594 (2015) 12033.

DOI: 10.1088/1742-6596/594/1/012033

Google Scholar

[7] P.Y. Shcheglov, S.A. Uspenskiy, A. V Gumenyuk, V.N. Petrovskiy, M. Rethmeier, V.M. Yermachenko, Plume attenuation of laser radiation during high power fiber laser welding, Laser Phys. Lett. 8 (2011) 475–480. doi:DOI 10.1002/lapl.201110010.

DOI: 10.1002/lapl.201110010

Google Scholar

[8] G. Casalino, M. Mortello, S.L. Campanelli, Ytterbium fiber laser welding of Ti6Al4V alloy, J. Manuf. Process. 20 (2015) 250–256.

DOI: 10.1016/j.jmapro.2015.07.003

Google Scholar

[9] M.Y. Krasnoperov, R.R.G.M. Pieters, I.M. Richardson, Weld pool geometry during keyhole laser welding of thin steel sheets, Sci. Technol. Weld. Join. 9 (2004) 501–506.

DOI: 10.1179/136217104225021733

Google Scholar

[10] S. Pang, X. Chen, X. Shao, S. Gong, J. Xiao, Dynamics of vapor plume in transient keyhole during laser welding of stainless steel: Local evaporation, plume swing and gas entrapment into porosity, Opt. Lasers Eng. 82 (2016) 28–40.

DOI: 10.1016/j.optlaseng.2016.01.019

Google Scholar

[11] C. Panwisawas, B. Perumal, R.M. Ward, N. Turner, R.P. Turner, J.W. Brooks, H.C. Basoalto, Keyhole formation and thermal fluid flow-induced porosity during laser fusion welding in titanium alloys: Experimental and modelling, Acta Mater. 126 (2017) 251–263.

DOI: 10.1016/j.actamat.2016.12.062

Google Scholar

[12] F. Fomin, N. Kashaev, Influence of Porosity on the High Cycle Fatigue Behaviour of Laser Beam Welded Ti-6Al-4V Butt Joints, Procedia Struct. Integr. 7 (2017) 415–422.

DOI: 10.1016/j.prostr.2017.11.107

Google Scholar

[13] H.L. Wei, J.W. Elmer, T. DebRoy, Crystal growth during keyhole mode laser welding, Acta Mater. 133 (2017) 10–20.

DOI: 10.1016/j.actamat.2017.04.074

Google Scholar

[14] S.R.K. Rao, G.M. Reddy, M. Kamaraj, K.P. Rao, Grain refinement through arc manipulation techniques in Al-Cu alloy GTA welds, Mater. Sci. Eng. A. 404 (2005) 227–234.

DOI: 10.1016/j.msea.2005.05.080

Google Scholar

[15] S. Kou, Welding Metallurgy, second ed., Hoboken, NJ, (2003).

Google Scholar

[16] O. Jin, S. Mall, Effects of microstructure on short crack growth behavior of Ti-6Al-2Sn-4Zr-2Mo-0.1Si alloy, Mater. Sci. Eng. A. 359 (2003) 356–367.

DOI: 10.1016/s0921-5093(03)00377-0

Google Scholar