Hydrodynamics of Liquid Motion in Straight-Line Capillaries

Article Preview

Abstract:

The paper considers the mathematical model of liquid motion in straight-line capillaries. The proposed mathematical model shows the liquid motion in slit-like capillaries, with regard to the density, viscosity and surface tension of liquids, the capillary size, and the angle of capillary inclination to the horizontal. The modeling results are proved by full-scale experiments.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

110-120

Citation:

Online since:

January 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.V. Samsonov, V.M. Samsonov, On boundary wetting conditions for rough solid surface, Physical and chemical aspects of studying clusters, nanostructures and nanomaterials 7 (2015) 425-430.

Google Scholar

[2] H. Koch, Sur une Courbe Continue sans Tangente Obtenue par une Construktion Geometrique Elementaire, Arciv for Matematic, Astronomioch Fysik 1 (1094) 681-704.

Google Scholar

[3] W. Hurewicz, G.Wallman, Dimensions Theory (PMS-4), Princeton Legacy Library, (2015).

Google Scholar

[4] B. Lunin, S. Torbin, The formation of defects in the surface of quartz glass during heat treatment, MSU Vest., Ser. 2. Chem. 46 (2005) 378-381.

Google Scholar

[5] A. Keller, Polymer single crystals, Polymer 3 (1962) 393-421.

Google Scholar

[6] N.V. Dalakova, K.M. Elekoeva, A.R. Manukyants, A.D. Prokhorenko, V.A. Sozaev, A.Z. Kashezhev, M. Kh. Ponegev, Polishers of angles of wetting by tin-strontium melts for aluminum films on silicon before and after photon annealing, Bull. of the Rus. Acad. of Sci. Phys. 4 (2014) 337-339.

DOI: 10.3103/s1062873814040108

Google Scholar

[7] A.P. Porkhaev, Coll. Jour. 5 (1949) 346-353.

Google Scholar

[8] D. Bonn, J. Eggers, J. Indekeu, J. Meunier and E. Rolley, Wetting and spreading, Reviews of modern physics 81 (2009) 1-68.

DOI: 10.1103/revmodphys.81.739

Google Scholar

[9] S. Baxter, A.B.D. Cassie, The water repellency of fabrics and a new water repellency test, J. of Text. Inst. Trans. 36 (1945) 1-26.

DOI: 10.1080/19447024508659707

Google Scholar

[10] S.N. Grigoriev, A.N. Krasnovskii, K.V. Kvachev Investigation of impregnation fibrous materials in pultrusion process of polymer composite materials, International Polymer Science and Technology 7 (2014) 1-4.

DOI: 10.1177/0307174x1404100711

Google Scholar

[11] I.S. Lobanova, V.A. Mescheryakov, A.N. Kalinichenko, Modeling of liquid flow in surface discontinuities, IOP Conf. Ser.: Mat. Sci. and Eng. 289 (2018) 012023.

DOI: 10.1088/1757-899x/289/1/012023

Google Scholar

[12] I.S. Lobanova, V.A. Meshcheryakov, N.P. Kalinichenko, A.N. Kalinichenko, M.S. Kiseleva Polz. Her. 4 (2016) 103-107.

Google Scholar

[13] Vilma A. Garcia U.S. Patent 4,351,185. (1982).

Google Scholar

[14] Orlando G. Molina U.S. Patent 4,191,048. (1980).

Google Scholar

[15] A. Sherwin: U.S. Patent 3,735,131 A. (1972).

Google Scholar