Fluorescent Penetrant Testing by Means of Excilamps

Article Preview

Abstract:

The paper provides a brief review of modern sources of ultraviolet (UV) radiation used in fluorescent penetrant testing (FT). The differences in implementation of the method with different radiation sources (excilamps, mercury UV lamp and LED UV lamp) are revealed experimentally. It is shown that the XeCl excilamp is not inferior to other sources of UV radiation used in FT.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

131-140

Citation:

Online since:

January 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Greissel, NDT shows strong growth. Quality 42 (2003) 4-5.

Google Scholar

[2] B.J. Ordonez, K. Walker, Ban on Mercury Vapor Bulbs in Black Lights, 5th Pan American Conference for NDT, (2011).

Google Scholar

[3] R. Link, A. Ivankov, N. Riess, Technological status of led techniques - Application in non destructive testing with special emphasis on magnetic particle, penetrant, visual and thermographic inspection, 14th International Conference of the Slovenian Society for Non-Destructive Testing: Application of Contemporary Non-Destructive Testing in Engineering, St. Bernardin/Portoroz, Slovenia, 2017, pp.145-154.

DOI: 10.3403/30241751

Google Scholar

[4] B. Lunin, S. Torbin, The formation of defects in the surface of quartz glass during heat treatment, MSU Vestnik, Series. 2. Chemistry 46 (2005) 378-381.

Google Scholar

[5] S. Sfarra, C. Ibarra-Castanedo, D. Ambrosini, D. Paoletti, A. Bendada, X. Maldague, Discovering the defects in paintings using non-destructive testing (NDT) techniques and passing through measurements of deformation, Journal of Nondestructive Evaluation 33 (2014) 358-383.

DOI: 10.1007/s10921-013-0223-7

Google Scholar

[6] M. Breit, Advantages, Risks and Prospects of the Usage of UV-LED-Sources (365 nm) for Fluorescence Stimulation in NDT, 18th World Conference on Nondestructive Testing, 16-20 April (2012).

Google Scholar

[7] P.P. Prokhorenko, N.P. Migun, S.V. Grebenshchikov, Experimental studies of polar indicator liquids used in capillary penetrant testing, International Journal of Engineering Science 25 (1987) 769-773.

DOI: 10.1016/0020-7225(87)90114-5

Google Scholar

[8] E.A. Sosnin, T. Oppenländer, V.F. Tarasenko, Applications of Capacitive and Barrier Discharge Excilamps in Photoscience, Journal Photochemistry and Photobiology 7 (2006) 145-163.

DOI: 10.1016/j.jphotochemrev.2006.12.002

Google Scholar

[9] M.I. Lomaev, V.S. Skakun, E.A. Sosnin, V.F. Tarasenko, D.V. Shitts, M.V. Erofeev Excilamps: efficient sources of spontaneous UV and VUV radiation, Phys. Usp. 2 (2003) 193-210.

DOI: 10.1070/pu2003v046n02abeh001308

Google Scholar

[10] I.W. Boyd, J.-Y. Zhang, U. Kogelschatz, Development and Applications of UV Excimer Lamps, in: A. Peled (Ed.), Photo-Excited processes, Diagnostics and Applications, The Netherlands: Kluwer Academic Publishers, 2003, pp.161-199.

DOI: 10.1007/1-4020-2610-2_6

Google Scholar

[11] U. Kogelschatz, Excimer lamps: History, discharge physics, and industrial applications. Proceedings of SPIE - The International Society for Optical Engineering 5483 (2004) 272-286.

Google Scholar

[12] J. Wieser, D.E. Murnick, A. Ulrich, H.A. Huggins, A. Liddle, W.L. Brown, Vacuum ultraviolet rare gas excimer light source, Review of Scientific Instruments 68 (1997) 1360-1364.

DOI: 10.1063/1.1147942

Google Scholar

[13] G.A. Volkova, N.N. Kirillova, E.N. Pavlovskaya, A.V. Yakovleva, Vacuum-ultraviolet lamps with a barrier discharge in inert gases, Journal of Applied Spectroscopy 41 (1985) 1194-1197.

DOI: 10.1007/bf00659516

Google Scholar

[14] P. Flesch, Light and light sources: High-intensity discharge lamps. Light and Light Sources: High-Intensity Discharge Lamps (2006) 1-344.

DOI: 10.1201/9781482269178-165

Google Scholar

[15] ISO 3452-1:2013 Non-destructive testing. Penetrant testing. Part 1: General principles, (2013).

Google Scholar

[16] ISO 3452-3:2013 Non-destructive testing. Penetrant testing. Part 3: Reference test blocks, (2013).

DOI: 10.3403/01425267u

Google Scholar

[17] ISO 3452-4:1998 Non-destructive testing. Penetrant testing. Part 4: Equipment, (1998).

Google Scholar

[18] Omelić Miroslav, Herman Danijela, Measurements of UV-Radiation During NDT Inspection, Proceedings of the 9th European Conference for Non-Destructive Testing (ECNDT), Berlin: Germany, (2006).

Google Scholar

[19] N.P. Kalinichenko, A.N. Kalinichenko, I.S. Konareva, Reference specimens of nonmetallic materials for penetrant nondestructive testing, Russian Journal of Nondestructive Testing 10 (2011) 663-666.

DOI: 10.1134/s1061830911100081

Google Scholar

[20] N.P. Kalinichenko, A.N. Kalinichenko, I.S. Lobanova, A.A. Zaitseva, Universal test panels from a nonmetal for capillary nondestructive testing, Russian Journal of Nondestructive Testing 10 (2015) 639-643.

DOI: 10.1134/s106183091510006x

Google Scholar