Dynamics of Internal Thermal Processes in Dielectric Materials and the Method of its Measurement in Microwave Hyperspectral Mode

Article Preview

Abstract:

The paper discusses the results of modeling of thermal radio processes for the purpose of non-destructive testing, diagnosis of dynamic states and prediction in dielectrics by sensing electromagnetic self-radiation in microwave hyperspectral mode. Measurement errors when using radiometric methods of testing have been shown. We have found the specifics of reducing measurement error while increasing the dynamics and resolution of radiometric measurements. We have presented a schematic of a new type of hyperspectrometer with higher performance and frequency resolution.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] H.-J.C. Blume, B.M. Kendall and J.C. Fedors, Measurement of ocean temperature and salinity via microwave radiometry, Boundary Layer Meteorol. 134 (1978) 295-308.

DOI: 10.1007/bf00913879

Google Scholar

[2] J. Karvonen, Baltic Sea Ice Concentration Estimation Using SENTINEL-1 SAR and AMSR2 Microwave Radiometer Data, IEEE Trans. on Geosci. and Remote Sens. 99 (2017) 1-3.

DOI: 10.1109/tgrs.2017.2655567

Google Scholar

[3] A.B. Tanner, Development of a high-stability water vapor radiometer, Radio Sci. 33. (1998) 449-462.

DOI: 10.1029/97rs02749

Google Scholar

[4] A.B. Tanner, A.L. Riley, Design and performance of a high-stability water vapor radiometer, Radio Sci. 38 (2003) 1-11.

DOI: 10.1029/2002rs002673

Google Scholar

[5] A.R. Harvey, R. Appleby, Passive mm-wave imaging from UAVs using aperture synthesis, Aeronaut. J. 107 (2003) 87-98.

DOI: 10.1017/s0001924000018376

Google Scholar

[6] A. Camps, J.M. Tarongi, Microwave radiometer resolution optimization using variable observation times, Rem. Sens. 2 (2010) 1826–1843.

DOI: 10.3390/rs2071826

Google Scholar

[7] A.V. Filatov, A.V. Ubaichin, A microwave four-channel null L-band radiometer, Instr. and Exp. Tech. 55 (2012) 59-64.

DOI: 10.1134/s0020441211060066

Google Scholar

[8] R.H. Dicke, The Measurement of Thermal Radiation at Microwave Frequencies, Rev. Sci. Instr. 17 (1946) 268–275.

Google Scholar

[9] T. Orhaug, W.A. Waltman, Switched Load Radiometer. Publ. Nat. Radio Astron. Obs. 1 (1962) 179-204.

Google Scholar

[10] I. Corbella, Analysis of Correlation and Total Power Radiometer Front-Ends Using Noise Waves IEEE Trans. On Geosci. and Remote Sens. 43 (2005) 2452-2459.

DOI: 10.1109/tgrs.2005.847912

Google Scholar

[11] A.V. Filatov, A.V. Ubaichin, The dynamic properties of a digital radiometer system and its operating efficiency, Meas. Tech. 54 (2012) 1-5.

DOI: 10.1007/s11018-012-9865-6

Google Scholar

[12] D.W. Allan, Time and Frequency (Time-Domain) Characterization, Estimation, and Prediction of Precision Clocks and Oscillators, IEEE Trans. Ultrason. Ferroelectr 6 (1987) 647-654.

DOI: 10.1109/t-uffc.1987.26997

Google Scholar

[13] W.J. Blackwell, V.R. Leslie, M.L. Pieper, J.E. Samra, All-Weather Hyperspectral Atmospheric Sounding, Lincoln lab. J. 18 (2010) 28-46.

DOI: 10.1109/igarss.2010.5654299

Google Scholar