[1]
J.H. Hollomon, Tensile deformation, Trans. AIME. 162 (1945) 268-290.
Google Scholar
[2]
P. Ludwik, Elements der technologischen Mechanik, Verlag Von Julius Springer, Leipzig, (1909).
Google Scholar
[3]
D.C. Ludwigson, Modified stress-strain relation for FCC metals and alloys, Metall. Trans. 2 (1971) 2825-2828.
DOI: 10.1007/bf02813258
Google Scholar
[4]
H.W. Swift, Plastic instability under plane stress, J. Mech. Phys. Solids. 1 (1952) 1-18.
Google Scholar
[5]
S. Shida, Empirical formula of flow stress of carbon steels—resistance to deformation of carbon steels at elevated temperature, J. Japan. Soc. Technol. Plast. 10 (1969) 610-617.
Google Scholar
[6]
G.R. Johnson, W.H. Cook, Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures, Eng. Fract. Mech. 21 (1985) 31-48.
DOI: 10.1016/0013-7944(85)90052-9
Google Scholar
[7]
Y.C. Lin, L.T. Li, Y.X. Fu, Y.Q. Jiang, Hot compressive deformation behavior of 7075 Al alloy under elevated temperature, J. Mater. Sci. 47 (2012) 1306-1318.
DOI: 10.1007/s10853-011-5904-y
Google Scholar
[8]
S. Mandal, V. Rakesh, P.V. Sivaprasad, S. Venugopal, K.V. Kasiviswanathan, Constitutive equations to predict high temperature flow stress in a Ti-modified austenitic stainless steel, Mat. Sci. Eng. A. 500 (2009) 114-121.
DOI: 10.1016/j.msea.2008.09.019
Google Scholar
[9]
L.E. Lindgren, K. Domkin, S. Hansson, Dislocations, vacancies and solute diffusion in physical based plasticity model for AISI 316L, Mech. Mater. 40 (2008) 907-919.
DOI: 10.1016/j.mechmat.2008.05.005
Google Scholar
[10]
F.J. Zerilli, R.W. Armstrong, Dislocation-mechanics-based constitutive relations for material dynamics calculations, J. Appl. Phys. 61 (1987) 1816-1825.
DOI: 10.1063/1.338024
Google Scholar
[11]
D. Samantaray, S. Mandal, A.K. Bhaduri. Comput. Mater. Sci. 47 (2009) 568-576.
Google Scholar
[12]
R.M. Broudy, Dislocations and mechanical properties of crystals, John Wiley, New York, (1957).
Google Scholar
[13]
U.F. Kocks, H. Mecking, Physics and phenomenology of strain hardening: the FCC case, Prog. Mater. Sci. 3 (2003) 171-273.
DOI: 10.1016/s0079-6425(02)00003-8
Google Scholar
[14]
J. Liu, J. Edberg, M.J. Tan, L.E. Lindgren, S. Castagne, A.E.W. Jarfors, Finite element modelling of superplastic-like forming using a dislocation density-based model for AA5083, Modelling. Simul. Mater. Sci. Eng.21 (2013) 025006.
DOI: 10.1088/0965-0393/21/2/025006
Google Scholar
[15]
M. Zamani, H. Dini, A. Svoboda, L.E. Lindgren, S. Seifeddine, N.E. Andersson, A.E.W. Jarfors, A dislocation density based constitutive model for as-cast Al-Si alloys: Effect of temperature and microstructure, Int. J. Mech. Sci. 121 (2017) 164-170.
DOI: 10.1016/j.ijmecsci.2017.01.003
Google Scholar
[16]
Y. Bergström, The plastic deformation of metals--a dislocation model and its applicability, Rev. Power. Metall. Phys. Ceram. 2 (1983) 79-265.
Google Scholar
[17]
Y. Estrin, A. Finel, M. Veron, D. Mazière, Thermodynamics, microstructures, and plasticity, Proceedings of the NATO Advanced Study Institute, Fréjus, France, 2002 2-13.
Google Scholar
[18]
G. Engberg, L. Lissel, Steel. Res. Int. 79 (2008) 47-58.
Google Scholar
[19]
A.H. van den Boogaard, J. Huétink, Simulation of aluminium sheet forming at elevated temperatures, Comput. Method. Appl. Mech. Eng. 195 (2006) 6691-6709.
DOI: 10.1016/j.cma.2005.05.054
Google Scholar
[20]
T. Siwecki, G. Engberg, Recrystallization controlled rolling of steels, Thermo-Mechanical Processing in Theory, Modelling and Practice, Stockholm, Sweden, 1996 121-144.
Google Scholar
[21]
M. Militzer, W. P. Sun, J.J. Jonas, Modelling the effect of deformation-induced vacancies on segregation and precipitation, Acta. Metall. Mater. 42 (1994) 133-141.
DOI: 10.1016/0956-7151(94)90056-6
Google Scholar
[22]
W.F. Kocks, Thermodynamics and kinetics of slip, Progr. Mater. Sci. 37 (1975) 1-281.
Google Scholar
[23]
H.J. Frost, M.F. Ashby, Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics, Pergamon Press, Headington Hill Hall, Oxford, OX3 OBW, England, (1982).
Google Scholar