[1]
T. Watanabe, An approach to grain boundary design for strong and ductile polycrystals, Res Mechanica. 11 (1984) 47-84.
Google Scholar
[2]
X. Fang, W. Wang, Z. Cai, C. Qin, B. Zhou, The evolution of cluster of grains with Σ3n relationship in austenitic stainless steel, Materials Science and Engineering: A. 527 (2010) 1571-1576.
DOI: 10.1016/j.msea.2009.10.034
Google Scholar
[3]
H. Kokawa, Potential of grain boundary engineering to suppress welding degradations of austenitic stainless steels. Science and Technology of Welding and Joining. 16 (2013) 357-362.
DOI: 10.1179/1362171811y.0000000021
Google Scholar
[4]
M. Detrois, R.L. Goetz, R.C. Helmink, S. Tin, Modeling the effect of thermal–mechanical processing parameters on the density and length fraction of twin boundaries in Ni-base superalloy RR1000, Materials Science and Engineering: A. 647 (2015) 157-162.
DOI: 10.1016/j.msea.2015.09.022
Google Scholar
[5]
Z. Li, L. Zhang, N. Sun, Y. Sun, A. Shan, Effects of prior deformation and annealing process on microstructure and annealing twin density in a nickel based alloy, Mater Charact. 95 (2014) 299-306.
DOI: 10.1016/j.matchar.2014.07.013
Google Scholar
[6]
D. S. Lee, H.S. Ryoo, S.K. Hwang, A grain boundary engineering approach to promote special boundaries in Pb-base alloy, Materials Science and Engineering: A. 354 (2003) 106-111.
DOI: 10.1016/s0921-5093(02)00919-x
Google Scholar
[7]
D. Field, L. Bradford, M. Nowell, T. Lillo, The role of annealing twins during recrystallization of Cu, Acta Mater. 55 (2007) 4233-4241.
DOI: 10.1016/j.actamat.2007.03.021
Google Scholar
[8]
Yamamoto Y, Moriyama M, Kajihara M, eta. Kinetics of diffusion induced grain boundary migration of [100] twist boundary in the Cu (Zn) system. Acta Mater. 47 (1999) 1757-1776.
DOI: 10.1016/s1359-6454(99)00053-1
Google Scholar
[9]
S. Saito, K. Kikuchi, D. Hamaguchi, M. Tezuka, M. Miyagi, H. Kokawa, S. Watanabe, Corrosion-erosion test of SS316L grain boundary engineering material (GBEM) in lead bismuth flowing loop, J Nucl Mater. 431 (2012) 91-96.
DOI: 10.1016/j.jnucmat.2011.11.040
Google Scholar
[10]
S. Kobayashi, S. Tsurekawa, T. Watanabe, G. Palumbo, Grain boundary engineering for control of sulfur segregation-induced embrittlement in ultrafine-grained nickel, Scripta Mater. 62 (2010) 294-297.
DOI: 10.1016/j.scriptamat.2009.11.022
Google Scholar
[11]
Y. Pan, B.L Adams, T. Olson, eta, Grain boundary structure effects on intergranular stress corrosion cracking of alloy X-750, Acta Meter. 44 (1996) 4685-4695.
DOI: 10.1016/s1359-6454(96)00125-5
Google Scholar
[12]
R.S Bellows, E.A. Schwarzkopf, J.K Tien, Creep-fatigue behavior of directionally solidified and single crystal intermetallic Ni3Al (B, Hf) at an intermediate temperature, Metall Trans A. 19 (1988) 479-486.
DOI: 10.1007/bf02649262
Google Scholar
[13]
B.A. Wilcox, A.H. Clauer, Creep of thoriated nickel above and below 0.5 Tm, Trans Metall, Soc AIME. 236 (1990) 570-80.
Google Scholar
[14]
V. Randle, M. Coleman, A study of low-strain and medium-strain grain boundary engineering, Acta Materialia. 57 (2009) 3410-3421.
DOI: 10.1016/j.actamat.2009.04.002
Google Scholar
[15]
V. Randle, Twinning-related grain boundary engineering, Acta Mater. 52 (2004) 4067-4081.
DOI: 10.1016/j.actamat.2004.05.031
Google Scholar
[16]
Kumar, M., A.J. Schwartz and W.E. King, Microstructural evolution during grain boundary engineering of low to medium stacking fault energy fcc materials.Acta Materialia. 50(2002) 2599-2612.
DOI: 10.1016/s1359-6454(02)00090-3
Google Scholar
[17]
T.S. Prithiv, P. Bhuyan, S.K. Pradhan, V. Subramanya Sarma, S. Mandal, Acta Mater. 146 (2018) 187-201.
DOI: 10.1016/j.actamat.2017.12.045
Google Scholar
[18]
P.A. Beck, P.R. Sperry, Strain Induced Grain Boundary Migration in High Purity Aluminum, J APPL PHYS. 21 (1950) 150-152.
DOI: 10.1063/1.1699614
Google Scholar
[19]
S. Tokita, H. Kokawa, Y.S. Sato, H.T. Fujii, I Mater Charact. 131 (2017) 31-38.
Google Scholar
[20]
A.C. Leff, M.L. Taheri, Quantitative assessment of the driving force for twin formation utilizing Nye tensor dislocation density mapping, Sripta Mater. 121 (2016) 14-17.
DOI: 10.1016/j.scriptamat.2016.04.035
Google Scholar